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Body dysmorphic disorder (BDD) is characterized by preoccupation with misperceived defects of appearance, causing significant distress
and disability. Previous studies suggest abnormalities in information processing characterized by greater local relative to global processing.
The purpose of this study was to probe whole-brain and regional white matter network organization in BDD, and to relate this to specific
metrics of symptomatology. We acquired diffusion-weighted 34-direction MR images from |4 unmedicated participants with DSM-IV
BDD and |6 healthy controls, from which we conducted whole-brain deterministic diffusion tensor imaging tractography. We then
constructed white matter structural connectivity matrices to derive whole-brain and regional graph theory metrics, which we compared
between groups. Within the BDD group, we additionally correlated these metrics with scores on psychometric measures of BDD
symptom severity as well as poor insight/delusionality. The BDD group showed higher whole-brain mean clustering coefficient than
controls. Global efficiency negatively correlated with BDD symptom severity. The BDD group demonstrated greater edge betweenness
centrality for connections between the anterior temporal lobe and the occipital cortex, and between bilateral occipital poles. This
represents the first brain network analysis in BDD. Results suggest disturbances in whole brain structural topological organization in BDD,
in addition to correlations between clinical symptoms and network organization. There is also evidence of abnormal connectivity
between regions involved in lower-order visual processing and higher-order visual and emotional processing, as well as interhemispheric

INTRODUCTION

Body dysmorphic disorder (BDD) is characterized by
preoccupation with misperceived defects of appearance or
excessive concern about slight physical anomalies, causing
clinically significant distress and impairment of functioning
(American Psychiatric Association, 2000). BDD affects
approximately 2% of the general population, making it
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more prevalent than schizophrenia or bipolar I disorder
(Buhlmann et al, 2010; Koran et al, 2008). It is associated
with high lifetime rates of psychiatric hospitalization (48%)
(Phillips and Diaz, 1997a) and suicide attempts (22.2-
27.5%) (Buhlmann et al, 2010; Phillips et al, 2005). Insight
in BDD is on a continuum, with 35.6-60% of BDD patients
being delusional in their convictions of disfigurement
(Mancuso et al, 2010; Phillips et al, 2006). Despite its high
prevalence and severity, relatively little is known about the
neurobiology.

Individuals with BDD perceive details of appearance
features as defective without seemingly being able to contex-
tualize that they are minor relative to their whole appearance.
Moreover, neuropsychological (Deckersbach et al, 2000)
and psychophysical (Feusner et al, 2010a; Stangier et al,
2008) studies suggest greater local relative to global visual
and visuospatial processing. Functional magnetic resonance
imaging (fMRI) studies using own and others’ faces and
inanimate object stimuli also suggest imbalances in detailed
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vs holistic/configural processing marked by abnormalities
in primary and/or secondary visual cortical, temporal, and
prefrontal systems (Feusner et al, 2007, 2010c, 2011).

Thus, there is evidence suggesting abnormalities in
information processing in BDD. However, multiple inter-
acting systems are likely responsible for neuropsychological
and psychophysical performance (ie, visual perceptual
systems, attentional systems, and prefrontal executive
function systems); from these studies it is therefore difficult
to discern which system(s) may be operating abnormally. In
addition, the fMRI studies have reported regional abnorm-
alities, rather than what is occuring on a network level, or
how regions interact within larger systems to process
information.

To better understand brain network organization in BDD,
this study investigated structural networks using a graph-
theoretical approach. This provides quantitative analyses of
complex brain networks by modeling them as organiza-
tional systems, which can additionally be related to
information such as clinical symptom severity. Structural
connectivity patterns may predict functional connectivity
patterns (Honey et al, 2009; Kotter and Sommer, 2000);
thus, structural network topology may provide indirect
information about functional organization in BDD. No
study to date has investigated brain network organization in
BDD.

Here, we seek to characterize whole brain and regional
white matter network organization in individuals with BDD
relative to that in healthy controls, and to relate this
organization to clinical symptom severity. The phenomen-
ology, as well as neuropsychological, psychophysical, and
functional neuroimaging studies informed our hypotheses.

We hypothesized that the whole brain network organiza-
tion in individuals with BDD would reflect highly localized
information processing. This would manifest in: (1) highly
localized subnetworks, with resultant abnormally high
modularity (Fan et al, 2011); (2) less efficient transfer of
information across the whole brain, resulting in lower
global efficiency (Bullmore and Sporns, 2009); and (3)
abnormally high mean clustering coefficient (MCC) (similar
to what was previously found in a study in a related
disorder, obsessive-compulsive disorder (OCD) (Zhang
et al, 2011)). Additionally, we hypothesized that BDD
symptom severity and poor insight/delusionality would
positively correlate with mean CC and modularity, and
negatively correlate with global efficiency.

We also predicted abnormalities in the BDD group in
regions involved in visual and emotional processing, and in
frontostriatal systems. First, as informed by a previous fMRI
study showing hypoactivity in dorsal visual stream regions
(Feusner et al, 2007) (which contribute to holistic/config-
ural visual processing), we predicted lower connectivity of
nodes in the dorsal visual stream with other nodes in the
brain. Specifically, the BDD group would have lower node
degree in the superior parietal lobule, lateral occipital
cortex, cuneus, supramarginal gyrus, and angular gyrus
(Creem and Proffitt, 2001). Second, we hypothesized lower
node degree in the left lingual gyrus, left occipital pole, and
left occipital fusiform gyrus, which are regions found to be
hypoactive in a previous study of own-face processing
(Feusner et al, 2010c). Third, owing to the finding in that
study of hyperactivity within frontostriatal circuits (orbito-
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frontal cortex (OFC) and the caudate), we predicted higher
node betweenness centrality. This would reflect greater
influence of these frontostriatal regions with respect to the
whole network; we postulated that this would be due to a
dominant effect on the network of engagement of obsessive
thoughts and compulsive behaviors, which were previously
found to correlate with activity in these regions (Feusner
et al, 2010c¢).

Finally, we hypothesized lower edge betweenness cen-
trality for node pairs connecting regions in the anterior
temporal lobe with regions in the occipital lobe, and node
pairs connecting right and left occipital cortices. These
hypotheses were informed by findings from a previous
diffusion tensor imaging (DTI) study in which fiber
disorganization in the inferior longitudinal fasciculus
(ILF) and forceps major (FM) correlated with the clinical
symptom of poor insight (Li et al, 2010). (For a more
detailed description of these graph theory metrics, see
Supplementary Materials and methods.)

MATERIALS AND METHODS
Participants

The UCLA Office of Human Research Protection Program
approved the study protocol. In all, 14 unmedicated
participants with BDD and 16 healthy controls, ages 20-48
years old, provided informed consent and were enrolled.
BDD and control participants of equivalent gender, age, and
level of education were recruited from the community. All
had previously participated in a prior fMRI study of own-
face processing (Feusner et al, 2010b). All were right-
handed, as determined through the Edinburgh Handedness
Inventory (Oldfield, 1971). Diagnoses were made by JDF,
who has clinical expertise with this population, using the
BDD Module (Phillips, 1995), a reliable diagnostic module
modeled after the Structured Clinical Interview for DSM-IV.
In addition, we performed a comprehensive clinical
psychiatric evaluation and screened BDD and healthy
control participants for comorbid Axis I disorders with
the Mini-International Neuropsychiatric Interview (MINI)
(Sheehan et al, 1998).

The following served as exclusion criteria: substance
abuse and/or dependence within the past 12 months,
lifetime neurological disorder, pregnancy, or any current
medical disorder that may affect cerebral metabolism. We
excluded BDD participants with any concurrent axis I
disorder besides dysthymic disorder, major depressive
disorder (MDD), or generalized anxiety disorder (GAD).
Depression and anxiety are frequently comorbid in BDD,
and thus a sample excluding these would not be represen-
tative. However, we required that BDD be the primary
diagnosis as defined by the MINI. Healthy controls could
not have any current or past axis I disorder. To assess BDD
symptom severity, we administered the BDD version of the
Yale-Brown Obsessive-Compulsive Scale (BDD-YBOCS)
(Phillips et al, 1997b), a validated scale widely used to
evaluate symptom severity in BDD, with scores ranging
from 0 to 48. To assess insight and delusionality, we
administered the Brown Assessment of Beliefs Scale (BABS),
a validated scale with scores ranging from 0 to 24 (Eisen
et al, 1998). Higher BABS scores index poorer insight. Last,
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we used the 17-item Hamilton Depression Rating Scale
(HDRS) (Hamilton, 1960), and the Hamilton Anxiety Rating
Scale (HARS) (Hamilton, 1969), both widely used and
well-validated scales, to measure depressive and anxiety
symptoms, respectively.

All BDD participants were required to have a score of
>20 on the BDD-YBOCS, were free from psychotropic
medications for a minimum of 8 weeks before study entry,
and were not receiving cognitive-behavioral therapy.

Imaging Data Acquisition

We scanned participants using a 3T Allegra MRI scanner
(Siemens Medical Solutions USA Inc., Malvern, Pennsylva-
nia). Diffusion-weighted MR imaging data using single-shot
spin-echo echo-planar imaging were acquired using the
following parameters: field of view =240 mm; voxel size =
2.5 X 2.5 x 3.0 mm’, with 0.75 mm gap; TR/TE = 7400/96 ms;
and flip angle 9°. We collected 44 contiguous axial slices aligned

Figure |

to the anterior commissure-posterior commissure line along
34 gradient-sensitizing directions with b= 1000 s/mm” and
one minimally diffusion-weighted scan. In addition,
high-resolution structural images were acquired using
T1-weighted magnetization-prepared rapid gradient echo
(MP-RAGE) with the following parameters: sagittal slicing;
TR =2300 ms; TE =293 ms; matrix =256 X 256; 160 slices;
0.5mm gap; field of view =256 x 256 x 160 mm’; flip
angle = 8°; and voxel size=1.3 x 1.3 x 1.0 mm”.

Data Processing

Figure 1 illustrates the data processing steps.

Calculation of diffusion tensors. All DTI data were
corrected for eddy current and motion distortions
using FSL  (http://www.fmrib.ox.ac.uk/fsl/fdt/fdt_eddy.
html), and the gradient table was updated based
on the computed rotation matrix. We used DTIFIT in FSL

Structural network analysis processing. (a) High-resolution T1 magnetization-prepared rapid gradient echo (MP-RAGE) of an individual example

participant. (b) In all, 113 cortical and subcortical regions of interest (ROIs), covering the whole brain, from the Harvard-Oxford probabilistic atlas. (c)
Diffusion-weighted magnetic resonance imaging (MRI). (d) Whole brain tractography. (e) ROIs were registered to each participant’s diffusion tensor imaging
(DTI) space, and served as nodes from which the number of streamlines between them was identified. (f) A total of |13 x |13 weighted matrix and (g)
I'13 % |13 binarized matrix. (h) Network render of an individual participant imposed on the Montreal Neurological Institute (MNI) standard brain (for

visualization purposes this only shows the top 6% strongest connections).
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(http://www.fmrib.ox.ac.uk/fsl/fdt/fdt_dtifithtml) to fit a
diffusion tensor at each voxel.

DTI deterministic tractography. We computed whole-
brain deterministic DTI tractography using Diffusion
Toolkit (http://trackvis.org/blog/tag/diffusion-toolkit/). We
reconstructed white matter fiber tracts by seeding at every
voxel in the brain and applying the Fiber Assignment by
Continuous Tracking (FACT) algorithm (Mori and van Zijl,
2002) with a maximum turn angle of 35°. Cortical and
subcortical regions of interest (ROIs) were defined using the
Harvard-Oxford cortical and subcortical probabilistic
atlases (Desikan et al, 2006). All midline cortical masks
were bisected to define separate hemispheric ROIs for each
cortical region. The masks were set to a liberal probabilistic
threshold of 10% to allow for the inclusion of tissue along
the gray-white matter interface, where DTI tractography
estimates are most reliable (Morgan et al, 2009). We used
FSL’s FLIRT program (Jenkinson et al, 2002) to determine
the optimal transformation between each participant’s DTI
volume and the corresponding MP-RAGE (12 degree-of-
freedom (d.f.) affine registration with a mutual information-
based cost function), as well as between each participant’s
MP-RAGE and the MNI152 T1 average brain (on which the
Harvard-Oxford probabilistic atlases are based). We then
combined the obtained two transformations to yield a final
transformation, which was subsequently inverted and
applied to register the 113 ROIs (in the atlas space) to each
participant’s DTI space. To assure that ROI masks did not
overlap after registration, each voxel was uniquely assigned
to the mask for which it had the highest probability of
membership.

Matrix construction. For each pair of ROIs, we deter-
mined the number of fibers connecting them. A fiber was
considered to connect two ROIs if it originated in the first
ROI and terminated in the second, or vice versa. We
repeated this process for all possible pairs to determine the
whole brain fiber connectivity matrix. These matrices
served as the input for subsequent brain network analyses
(Rubinov and Sporns, 2010). We assessed the matrices at 11
different sparsity levels (defined as the existing number of
edges in a graph divided by the maximum possible number
of edges) from 10 to 20%, at intervals of 1%. (For further
description of, and rationale for, this sparsity thresholding,
see Supplementary Materials and methods.) We then
binarized the thresholded matrices to create corresponding
brain network adjacency matrices, where 1 represents a
connection and 0 represents no connection.

Graph Theory Metrics

The following is a brief description of the graph theory
metrics used in this study. (For further descriptions, see
Supplementary Materials and methods and Bullmore and
Sporns (2009)) In graph theory, a network is comprised of
‘nodes’ (here, anatomically defined ROIs) and the connec-
tions or ‘edges’ between them (in this case, the white matter
tracts). Node degree is the number of total nodes in the
network that have direct connections to that node; a high
value thus signifies that this node is highly connected to
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other nodes in the network. The CC of a node is the ratio of
the number of actual connections among its first-degree
neighbors to the number of all possible connections. Thus, a
high CC value for a node indicates that its neighbors are
strongly interconnected to one another. MCC is the average
of the CC for all nodes in the network; high values may
confer greater local efficiency of information transfer of a
network (Bullmore and Sporns, 2009). Globally efficiency is
mathematically defined by averaging the inverse shortest
path lengths across all node pairs. (Path length is computed
by counting the minimum number of intermediate nodes
needed to pass through to link any node pair.) A high global
efficiency value represents a high overall capacity for
parallel information transfer and integrated processing
(Bullmore and Sporns, 2012). Modularity measures how
strongly nodes in a community interconnect in comparison
to a random graph. Thus, the higher the modularity value
for a given community structure, the less likely it is to be the
result of chance alone. Node betweenness centrality is the
fraction of all shortest paths that contain a specific node.
Thus, higher values indicate that a node has more
‘influence’ over flow of information between other nodes,
in networks in which information tends to follow the
shortest available path (Girvan and Newman, 2002).
Similarly, edge betweenness centrality is the fraction of all
shortest paths in the network that contain this connection.
Higher values indicate a connection that has greater
influence over other connections in the network.

We analyzed these connectivity matrices using the Brain
Connectivity Toolbox (https://sites.google.com/a/brain-con-
nectivity-toolbox.net/bct/) to yield the graph theory metrics
of interest. For each metric we evaluated the area under the
curve (AUC) over a range of sparsities to provide
summarized measures of the network. We calculated both
local metrics (for specific nodes) and global metrics
(averaged across all nodes).

Three global network metrics were of primary interest
based on the hypotheses of this study: CC, global efficiency,
and modularity. Additionally, three local network metrics
were of primary interest: node degree, node betweenness
centrality, and edge betweenness centrality. For node degree
we examined nodes in the dorsal visual stream (superior
parietal, lateral occipital, cuneus, supramarginal gyrus, and
angular gyrus) (Creem and Proffitt, 2001), as well as the left
lingual gyrus, left occipital pole, and left occipital fusiform
gyrus. For node betweenness centrality, we examined the
OFC and caudate.

For edge betweenness centrality, we examined sets of con-
nections between visual and emotional processing systems.
These included node pairs between the anterior temporal
lobe (temporal pole, amygdala, and hippocampus) and the
occipital lobe (occipital fusiform, temporal occipital fusi-
form, and occipital pole), which approximates white matter
connections via the ILF (Catani and Schotten, 2008). We
also examined the node pair of the right and left occipital
cortex (right and left occipital pole), which approximates
connections via the FM (Catani and Schotten, 2008).

Statistical Analyses

We conducted statistical analyses on age- and gender-
corrected data using General Linear Model Univariate in
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SPSS, with gender as a fixed factor and age as continuous
predictor.

For global network metrics, we performed two-tailed two-
sample t-tests to compare MCC, global efficiency, and
modularity AUC values between the healthy control and
BDD groups. Because these metrics are non-independent,
with respective separate hypotheses for each, we analyzed
these separately rather than implementing an omnibus
test or correcting for multiple comparisons. We used
Pearson’s correlation coefficients to assess the association
between the global network metrics and BDD-YBOCS and
BABS scores in the BDD group. We used a significance
threshold of «=0.05, Bonferroni corrected for multiple
comparisons.

For the local network metrics, we performed repeated-
measures ANOVA to compare separately each graph theory
metric of node degree, node betweenness centrality, and
edge betweenness centrality values between the healthy
control and BDD groups; group was one factor, and each
node (or node pair for edge betweenness centrality) was the

Table I Demographics and Psychometric Scores

repeated-measures factor. We used Huynh-Feldt adjust-
ments for non-sphericity.

RESULTS
Demographics and Psychometrics

All BDD participants had preoccupations with perceived
facial defects. Two had comorbid GAD, one had comorbid
MDD, and three had both GAD and MDD or dysthymia
(Table 1).

Global Network Results

The BDD group showed significantly higher MCC than
controls across the range of sparsities (aside from at 17%)
(Figure 2a), and for the AUC (5.14 £ 0.071 vs 5.05 = 0.074,
t=23.5, d.f. =28, Cohen’s d=1.32, P=10.0015) (Figure 2d).
There were no significant differences between groups for
any of the sparsity values or AUC for modularity (AUC:
43+0.11 for BDD, 4.3+0.12 for controls, t= —0.12,

Characteristic BDD group (N=14) Control group (N=16) P-value®
Age (years), mean (SD) 26.7 (4.9) 27.3 (5.3) 0.75
Female/male, no. 717 8/8 >099
Education (years), mean (SD) 155 (29) 169 (2.3) 0.150
BDD-YBOCS score, mean (SD) 29.6 (4.6) N/A N/A
BABS score, mean (SD) 14.9 (4.1) N/A N/A
HDRS score, mean (SD) 10.1 (67) 1.3 (1.5) <0.001
HARS score, mean (SD) 122 (77) 1.6 (1.4) <0.001

Abbreviations: BDD, body dysmorphic disorder; BDD-YBOCS, BDD version of the Yale—Brown Obsessive-Compulsive Scale; BABS, Brown Assessment of Beliefs
Scale; HDRS, |7-item Hamilton Depression Rating Scale; HARS, Hamilton Anxiety Rating Scale; N/A, not applicable..

“Two-sample t-tests for age, education, and HDRS; XZ test for female/male.
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Figure 2 Global network measures in body dysmorphic disorder (BDD) and healthy control groups. Graphs in the top row show between-group
differences as a function of network sparsity threshold for: (a) mean clustering coefficient (MCC); (b) modularity; and (c) global efficiency. Graphs in
the bottom row show between-group differences for the area under the curve (AUC) for the range of sparsities tested for: (d) MCGC; (e) modularity; and

(f) global efficiency.
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d.f. =28, P=0.90) (Figures 2b and e) or global efficiency
(AUC: 5.08+0.02 for BDD, 5.09%0.03 for -controls,
t= —0.71, d.f. =28, P=0.48) (Figures 2c¢ and f).

Correlation with Clinical Variables

There was a significant negative correlation between global
efficiency and BDD-YBOCS scores (r= — 0.68, P=0.0069)
(Figure 3). Modularity positively correlated with BABS
scores (r=0.54, P=0.047), although it did not survive
Bonferroni correction. There were no significant correla-
tions between MCC and BDD-YBOCS (r=0.26, P=0.37) or
BABS (r= —0.074, P=0.80) scores, between global effi-
ciency and BABS (r= —0.24, P=0.40), or between modu-
larity and BDD-YBOCS scores (r=0.15, P =0.62).

As a post hoc analysis, we explored separate correlations
between the network metrics and the items of the BDD-
YBOCS that index obsessional thoughts (items 1-5) and the
items that index behaviors (compulsive-like and avoidant—
items 6-10 and 12). There was a significant negative corre-

lation between behaviors and global efficiency (r= —0.70,
P=0.0047), but the correlation between obsessive thoughts
and global efficiency was not significant (r= —0.48,

P=0.081). There were no significant correlations with
MCC and modularity for these subscale measures.

We also conducted post hoc correlation analyses to test
the relationship between the network metrics and depres-
sion severity. (We did not test relationships with anxiety
severity separately, as the correlation between HARS and
HDRS scores in our sample was r=0.93) There were no
significant correlations between HDRS scores and mod-
ularity (r= —0.46, P=0.098), global efficiency (r=0.036,
P=10.90), or MCC (r=0.34, P=0.23).

Local (Nodal) Network Results

The analysis of edge betweenness centrality revealed a
significant group effect (F;,3=4.22, P=0.049) and node
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effect (Fy0.57,006 =20.39, P<0.0001), but no group by node
effect (F19.57,296 = 1.15, P=10.33). Post hoc two-sample t-tests
revealed that the BDD group showed significantly higher
edge betweenness centrality for the connection between left
temporal pole and left occipital pole (BDD-CON = 60.44,
t=3.73, d.f.=28, Cohen’s d=1.4, P=0.00086), the con-
nections between left temporal pole and left temporal
occipital fusiform cortex (BDD-CON =23.76, t=2.14,
d.f. =28, Cohen’s d=0.8, P=0.041), between left amygdala
and left occipital pole (BDD-CON = 30.15, t=2.2, d.f. =28,
Cohen’s d=0.83, P=0.036), and between right amygdala
and right occipital pole (BDD-CON=15.15, t=2.13,
d.f. =28, Cohen’s d=0.8, P=0.042). Only the connection
between left temporal pole and left occipital pole survived
Bonferroni correction, using a corrected o threshold of 0.05/
18 =0.0028 (accounting for all 18 possible node connections
for the right and left between the anterior temporal lobe and
the visual cortex). The BDD group showed significantly
higher edge betweenness centrality for the connection
between left and right occipital pole (BDD-CON =112.39,
t=2.12, d.f. =28, Cohen’s d =0.8, P =0.043).

There were no significant differences between groups
for either node degree or node betweenness centrality
(Supplementary Table S1).

We additionally conducted post hoc correlation analyses
between edge betweenness centrality values and BDD-
YBOCS scores and BABS scores for the connections that
were significantly different between groups (before correc-
tion for multiple comparisons). For the connection between
the left temporal pole and the left temporal occipital
fusiform cortex, there was a significant correlation between
edge betweenness centrality and total BDD-YBOCS scores
(r=10.73, P=0.0031), which survived Bonferroni correction
(o threshold of 0.05/10 =0.005). For this connection, there
were significant correlations between both the BDD-YBOCS
obsessive thoughts items and the behaviors items, and edge
betweenness centrality (r=0.71, P=0.0043 and r=0.72,
P=0.0039, respectively). There was also a correlation
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Figure 3 Correlations between clinical severity measures and global network measures in individuals with body dysmorphic disorder (BDD). The top row
shows correlations between the BDD version of the Yale-Brown Obsessive Compulsive Scale (BDD-YBOCS) scores and area under the curve (AUC)
values for: (a) mean clustering coefficient (MCC); (b) modularity; and (c) global efficiency. The bottom row shows correlations between the Brown
Assessment of Beliefs Scale (BABS) scores (a measure of poor insight/delusionality) and AUC values for: (d) MCGC; (e) modularity; and (f) global efficiency.
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between behaviors and edge betweenness centrality for the
left temporal pole/left occipital fusiform cortex connection
(r=0.56, P=0.036) (not surviving Bonferroni correction).
The correlation between obsessive thoughts and edge
betweenness centrality for this connection was not sig-
nificant (r=0.46, P=0.098).

Additional Analyses

We additionally performed post hoc analyses to explore if
prior treatment in BDD subjects affected results. Eight of
the BDD subjects were treatment naive, and six had received
prior medication treatment. (Two subjects received brief
psychotherapy, but it was unrelated to BDD.) The
previously medicated group showed significantly higher
MCC than controls (AUC: 5.19+0.061 vs 5.05+0.074,
t=4.09, d.f. =20, Cohen’s d=1.83, P=0.00057), while the
BDD medication naive group showed a trend for higher
MCC than controls (AUC: 5.11+0.059 wvs 5.05+0.074,
t=3.5, d.f. =22, Cohen’s d=0.83, P =0.064).

For the local (nodal) results, there were no significant
differences between groups when we separately analyzed the
BDD medication naive and the previously medicated BDD
groups, each compared with matched sets of healthy
controls. (This may have been due to loss of power in
these smaller subgroups.)

DISCUSSION

This study represents the first brain network analysis in
BDD. Individuals with BDD exhibit abnormal white matter
brain network organization, as characterized by higher
MCC compared with controls. In addition, global efficiency
negatively correlates with BDD symptom severity. Indivi-
duals with BDD also demonstrate higher edge betweenness
centrality for connections between anterior temporal and
occipital regions, as well as between bilateral occipital poles.

Global Metrics

As hypothesized, individuals with BDD have higher MCC
relative to controls, suggesting a disturbance in network
organization. In general, higher CCs are found in networks
with a more regular, as opposed to random, organization
(Stam and Reijneveld, 2007). Higher CCs are thought to
confer locally higher degree of information transfer
(Bullmore and Sporns, 2009). However, such networks that
are overall more regular may also exhibit globally reduced
signal propagation speed, computational power, and syn-
chronizability across distant regions (Watts and Strogatz,
1998). As structural and functional network organizations in
the brain share many topological features (Honey et al,
2010) (and structural connectivity patterns may predict
functional connectivity patterns; Honey et al (2009), Honey
et al (2010), and Kotter and Sommer (2000)), such
disturbance in structural network organization may provide
indirect information about functional organization in BDD.

Higher MCC in BDD suggests a network organization in
which local connections dominate. One possible clinical
implication of this could be an imbalance in global and local
processing of visual information, leading to a distorted
perception of appearance; individuals with BDD perceive
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detailed imperfections and flaws (local information) and are
unable to contextualize them as minor relative to their
whole appearance. This is consistent with previous findings
in BDD that provide evidence of greater local (relative to
global) visual and visuospatial information processing
(Deckersbach et al, 2000; Feusner et al, 2007, 2010a, c,
2011). Specifically, a previous neuropsychological study that
included a measure of visuospatial construction and
memory (Rey Osterrieth Complex Figure Test) demon-
strated poor performance in the BDD group, mediated by
poor organizational strategies due to selective recall of
details instead of larger design features (Deckersbach et al,
2000). A study examining the face inversion effect found
that individuals with BDD, relative to healthy controls,
demonstrated less delay in response time when identifying
upside-down relative to upright faces, suggesting a tendency
to engage in highly detailed processing of faces regardless of
their orientation. In contrast, healthy controls are more
likely to engage in holistic processing of upright faces, yet
rely on (slower) detailed processing of inverted faces.
Another psychophysical experiment in BDD found an
advantage for change detection for facial features of others’
faces (Stangier et al, 2008).

However, it is unclear if abnormal performance in these
studies was the result of impairments in information
processing at the level of executive functioning resulting
in poor memory organization strategies, selective attention,
visual integration, or lower-order detail and/or holistic/
configural visual processing. Higher MCC found in this
study could reflect abnormal network organization across
the whole brain, and could relate to these abnormalities in
information processing; however, future studies are neces-
sary to test this directly.

Although no previous brain network studies have been
performed in BDD, one study examined functional network
properties in OCD (Zhang et al, 2011). Relative to healthy
controls, individuals with OCD demonstrated a pattern of
significantly greater CCs, but not significantly different
shortest path lengths. However, this was only found in a
‘top-down control network’ (multiple prefrontal, parietal,
temporal, occipital, and subcortical regions) but not for
whole-brain functional networks. The study also found that
CC correlated with functional connectivity for primarily
short-range functional connections. BDD has similarities to
OCD in terms of overlapping phenomenology, shared
heredity, and evidence of shared genetics (Hollander and
Wong, 1995; Monzani et al, 2012). Although this study in
OCD (Zhang et al, 2011) examined functional rather than
structural networks, the current study suggests that BDD
individuals may show similar patterns of aberrant structural
network properties.

In this study, the previously medicated group had greater
differences in MCC relative to healthy controls than the
medication naive group did. A possible explanation for this
is that individuals who were more severely ill, and hence
had more aberrant brain network organization, were more
likely to have been medicated in the past.

Local Metrics

Contrary to our hypotheses, we found greater edge
betweenness centrality for connections between temporal



pole and occipital pole nodes. White matter tracts connect-
ing these regions are considered part of the ILF (Catani and
Schotten, 2008). Significantly greater edge betweenness
centrality was observed for nodes that span early (eg, V2)
visual processing systems with higher-order visual proces-
sing systems in the temporal pole. The temporal pole is
thought to be involved in integration of sensory, motor, and
linguistic information with semantic knowledge and has
been proposed to represent a hub in a cortical semantic
network (Patterson et al, 2007). Because edge betweenness
centrality quantifies the fraction of all shortest paths in a
graph containing the given edge, greater values in BDD
between occipital and anterior temporal regions suggests
that this connection is more influential on the whole brain
network in individuals with BDD compared with controls.
This may also be indicative of heightened communication
between these nodes.

A relevant clinical implication of this is that visual
information processing for individuals with BDD may
interfere or ‘bleed into’ many cognitive processes. This is
consistent with the observation that for individuals with
BDD a very large proportion of their time (on average 3-8 h
per day (Phillips, 2005)) is occupied by intrusive, obsessive
thoughts, usually relating to the visual perception of their
appearance. The fact that the finding in this study was
significant on the left may point to a more dominant left
hemisphere involvement in visual information processing
in BDD, consistent with existing evidence for greater detail
and analytic processing found in a previous fMRI study
(Feusner et al, 2007).

There are alternative interpretations of the findings
involving the temporal pole, as it subserves multiple
functions. For example, a recent study in pathological
gambling found relationships between activity in the
temporal poles and both gambling urges and subjective
emotional responses (Balodis et al, 2012). Given previously
described functions of the temporal pole, the authors
offered the possible explanation that affectively salient
gambling cues may have triggered the retrieval of personally
relevant emotional memories. A similar process may occur
in individuals with BDD, but in this case visual appearance
cues may be the typical trigger of such emotional memories.

Contrary to our hypotheses, we found greater edge
betweenness centrality for the connection between bilateral
occipital poles. This connection likely approximates the
portion of the FM that connects relatively early visual
processing regions of the right and left visual cortical
hemispheres (Putnam et al, 2010). Although the significance
of this finding relative to the phenomenology of BDD is not
entirely clear, a possible explanation is that preoccupations
with perceived defects in BDD may rely heavily on visual
processing, for which early communication between bilat-
eral visual fields is generally important.

Correlations with Clinical Variables

In the BDD group, there was a significant negative
correlation between global efficiency and BDD-YBOCS.
Greater severity of symptoms is thus associated with lower
global integration of the network. The results for the
separate correlation analyses with the obsessive thoughts
and the behaviors items of the BDD-YBOCS suggest that the
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relationship between BDD symptom severity and global
efficiency is driven to a greater extent by the severity of
compulsive/avoidant behaviors than by obsessive thoughts.
This suggests that BDD symptomatology (in particular
compulsive and avoidant behaviors) globally relates to a
multitude of brain subsystems. The overall effect of such
interactions may be to impact negatively the efficiency of
the nervous system.

Interestingly, despite this negative correlation, we did not
detect a significant between-group difference in global
efficiency. We posit that phenotypes, such as propensity for
obsessive thoughts and compulsive behaviors, may map
better to brain pathophysiology than DSM or ICD-10
diagnostic categories. Categorical diagnostic constructs in
psychiatry, such as the diagnosis of BDD, may encompass
multiple overlapping endophenotypes and phenotypes
(Insel and Cuthbert, 2009), particularly as they may
represent heterogeneous groupings of symptom clusters or
dimensions.

Secondly, on a local level the strong correlation between
edge betweenness centrality and BDD-YBOCS scores, for the
connection between the left temporal pole and the left
temporal occipital fusiform cortex, is an indication that
individuals with greater severity of symptoms tend to have a
larger percentage of all shortest paths that include this
connection. As this connection is likely facilitated by the
ILF, this strong correlation thus adds to a growing literature
supporting the role of the ILF in feed-forward processes,
which may involve consolidation of visual memories
(Shinoura et al, 2007). Additionally, evidence also supports
its involvement in feedback information processing, carry-
ing signals regarding emotional valence of stimuli to the
visual cortex and resulting in enhanced visual processing
(Morris et al, 1998).

Moreover, evidence from non-human primates and
humans suggests that the temporal pole is involved in
linking highly processed perceptual information with
emotional responses, which contributes to the formation
of personal semantic memory (Olson et al, 2007). Thus, the
degree to which those with BDD experience intrusive,
obsessive thoughts and compulsive behaviors may be
associated with the proportion of general information
transfer throughout the brain that includes this connection,
which is involved in integrating emotion and memory with
visual processing systems.

A clinical implication of this is that in individuals with
BDD, obsessive thoughts about appearance and, especially,
compulsive behaviors and wurges to engage in such
behaviors, may be tightly linked with what they perceive
visually. This, in turn, is influenced by visually related
memories and emotion. Additionally, as this finding
manifests with a statistically significant laterality (to the
left side), a greater degree of detailed analytic visual
processing may thus be associated with greater symptom
severity (Evans et al, 2000). As such, in the future we plan to
explore the possibility that this connection may represent
an imaging biomarker for an important phenotype in BDD.

Limitations

Small sample size may have resulted in decreased ability to
detect significant differences with smaller effect sizes. A
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subset of the BDD group had comorbid GAD and/or a
depressive disorder, which may have been a confound.
Although we excluded substance abuse or dependence, we
did not assess for tobacco use. Another limitation is that IQ
measurements of participants were not available. Other
studies have found IQ to be positively correlated with global
efficiency in white matter networks (Li et al, 2009), and
negatively correlated with path length (although not with
MCQCQ) in functional networks (van den Heuvel et al, 2009).
In our study, the groups did not significantly differ on total
years of education. Moreover, previous neuropsychological
studies have not found abnormal IQ in individuals with
BDD (Deckersbach et al, 2000; Dunai et al, 2010; Hanes,
1998).

In addition, there are inherent limitations in diffusion
tractography (Jbabdi and Johansen-Berg, 2011). For exam-
ple, such analyses may be dependent on the choice of
anatomical atlas, which subsequently determine the choice
the nodes (Wang et al, 2009; Zalesky et al, 2010). The 12-
parameter affine transformations we used for realigning the
MP-RAGE and DTI spaces only partially corrects for BO
inhomogeneity-induced geometric distortions; alternative
techniques using nonlinear registration may better address
such distortions for future studies.

CONCLUSIONS

Individuals with BDD show disturbances in topological
organization of structural networks, which correlate with
clinical symptomatology. In addition, there is evidence of
abnormal connectivity in regions involved in interhemi-
spheric visual information transfer, and those involved in
lower- and higher-order visual and emotional processing,
the latter of which also correlates with clinical symptoma-
tology. These findings may be associated with disturbances
in information processing found in previous studies. Future
studies of individuals earlier in the course of illness
(adolescence) and in unaffected first-degree relatives will
be useful to determine if these findings represent endophe-
notypes predisposing to specific clinical symptoms in BDD.
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