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We describe the USC Multimodal Connectivity Database (http://umcd.humanconnectomeproject.org), an inter-
activeweb-based platform for brain connectivitymatrix sharing and analysis. The site enables users to download
connectivitymatrices shared byother users, uploadmatrices from their ownpublished studies, or select a specific
matrix and perform a real-time graph theory-based analysis and visualization of network properties. The data
shared on the site span a broad spectrum of functional and structural brain connectivity information from
humans across the entire age range (fetal to age 89), representing an array of different neuropsychiatric and neu-
rodegenerative disease populations (autism spectrum disorder, ADHD, and APOE-4 carriers). An analysis com-
bining 7 different datasets shared on the site illustrates the diversity of the data and the potential for yielding
deeper insight by assessing new connectivity matrices with respect to population-wide network properties rep-
resented in the UMCD.

© 2015 Elsevier Inc. All rights reserved.
Introduction

The endeavor to unravel the human brain connectome using
neuroimaging is now well underway. The Human Connectome
Project (http://www.humanconnectome.org/ and http://www.human
connectomeproject.org/) is emblematic of this, having collected and
shared high-quality functional MRI, diffusion-weighted MRI, structural
MRI, and detailed demographic and behavioral data from 1200 subjects.
Meanwhile, labs around the world continue to collect and analyze
MRI-based connectivity data at a rapid pace, furthering our knowledge
about neurological and neuropsychiatric disease (Crossley et al., 2014)
(Deco and Kringelbach, 2014), the structural connectivity of the brain's
anatomical core (Van Den Heuvel and Sporns, 2011) (Irimia and Van
Horn, 2014), the relationship between structural and functional con-
nectivity (Goñi et al., 2014; van den Heuvel and Sporns, 2013), evolving
landscape of systems connectivity across the lifespan (Betzel et al.,
2014; Chan et al., 2014), temporal dynamics of functional brain con-
nectivity (Allen et al., 2014; Zalesky et al., 2014), and the effects of
neurostimulation (Wang et al., 2014).

All of these studies can be unified by their common underlying data
format, the connectivity matrix (CM). A connectivity matrix has brain
regions of interest along rows and columns and the connectivity
strength between a given pair of ROIs stored in the cell where these
two regions intersect (Bullmore and Sporns, 2009). The connection
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strength or “edge weight” is typically a structural connectivity measure
such as the fiber tractography streamline density between two ROIs, or
a functional connectivity measure representing the statistical similarity
between two ROIs' BOLD signal time series. The CM is a highly compact,
distilled representation of network-wide or often brain-wide connectiv-
ity. The USC Multimodal Connectivity Database (http://umcd.human
connectomeproject.org; formerly the UCLA Multimodal Connectivity
Database; (Brown et al., 2012)) is an open repository for CMs. It is a pub-
licly accessible website where any user can download CMs that have
been shared by other researchers, upload their own CMs to share with
the research community, and perform on-the-fly graph theory-based
analyses of any publicly available CM. Numerous studies have been con-
ducted using data available on the UMCD for testing reproducibility of
structural network properties (de Reus and van den Heuvel, 2013), de-
signing new community detection algorithms (Dodero et al., 2014;
Richiardi et al., 2013), and developing network-based classification al-
gorithms for autism spectrum disorder (Cheplygina et al., 2014).

Description of the tool

The site was designed as a central repository for connectivity matri-
ces. There are a number of immediate benefits that a centralized re-
source provides: broad, click-of-the-mouse fast meta-analyses, such as
those enabled byBrainMap (http://www.brainmap.org/) or Neurosynth
(http://neurosynth.org/); reproducibility of findings across study sites
and varieties in data analysis methodology; and the availability of data
to other researchers whose expertise may enable the re-analysis of
existing data in order to yield previously undiscovered insights.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2015.08.043&domain=pdf
http://umcd.humanconnectomeproject.org
http://www.humanconnectome.org/
http://www.humanconnectomeproject.org/
http://www.humanconnectomeproject.org/
http://umcd.humanconnectomeproject.org
http://umcd.humanconnectomeproject.org
http://www.brainmap.org/
http://neurosynth.org/
http://dx.doi.org/10.1016/j.neuroimage.2015.08.043
mailto:jesse.brown@ucsf.edu
http://dx.doi.org/10.1016/j.neuroimage.2015.08.043
http://www.sciencedirect.com/science/journal/10538119


1239J.A. Brown, J.D. Van Horn / NeuroImage 124 (2016) 1238–1241
In its 4 years of existence, UMCD has accumulated 1887 publicly
available CMs from 21 different studies. These CMs are primarily
derived from individual subjects, although group average matrices are
also accepted. Of these data, 1652 CMs are from functional MRI (fMRI)
data, 224 from diffusion tensor imaging (DTI), 5 from structural MRI,
and 6 from diffusion spectrum imaging (DSI) are publicly available.
These data blanket the human lifespan, from fetuses with a gestational
age of 200 days to 89-year-old individuals. Represented subject popula-
tions include fetuses, typically developing children and adolescents,
healthy adults, and patients with ADHD (hyperactive, inattentive, and
combined subtypes), autism spectrum disorder (ASD), obsessive–
compulsive disorder, and APOE-4 carrier status. The majority of func-
tional data are derived from task-free fMRI scans, duringwhich subjects
are awake but not receiving stimulus or explicitly performing any cog-
nitive task.

Procedure for sharing or accessing data

Connectivity matrices can be shared to the UMCD on the “Upload
New Data” page. They are typically symmetric, undirected, square CMs
that represent connectivity strengths derived from processed data.
The user needs to prepare the following: 1) a n × n connectivity matrix
saved as a square, tab, or space-delimited text file; 2) a n × 3 column
text file where the (x, y, z) center of mass in MNI coordinate space is
listed for each of the n nodes in the network; 3) a n × 1 column text
file that lists the full name of the brain region for each node in the net-
work; and 4) a n × 1 column text file that lists the regional abbreviation
for each node.

Once each of these files has been uploaded, the user is then request-
ed to fill in the demographic features about the CM that is being shared,
along with a list of preprocessing steps. Requested demographic in-
formation include the subject age, sex, population fromwhich that sub-
ject came (e.g., “Healthy Control” or “ADHD-Inattentive”), and group
size (where a “1” specifies a CM from an individual and a value greater
than 1 specifies an average of that number of subjects). Study-specific
data parameters include the data type (fMRI, DTI, DSI, structural MRI,
EEG, or MEG), the scanner manufacturer, and the MRI field strength.
Numerous optional parameters describing the data preprocessing
are also present (motion correction, deterministic tractography, etc.).
Data can be batch uploaded by vertically stacking text files for
each CM. Once data have been shared via the submit button, it is auto-
matically added to the database and searchable on the “Browse All
Data” page.

The data come from scanners and centers all over the world, includ-
ing both single-center studies and data from international consortia
such as the INDI 1000 Functional Connectomes dataset (Biswal et al.,
2010), the ADHD-200 competition (The ADHD-200 Consortium, 2012,
p. -), and the Human Connectome Project (http://humanconnectome.
org/).

The data can be accessed by visiting the “Browse All Data” page –
http://umcd.humanconnectomeproject.org/umcd/default/browse –
which has a rapid, easy-to-use search function for limiting only datasets
that have the search term. A dataset can then be selected to download
using the “View/Download” link. Any visitor to the site can download
any publicly available datasetwithout an account. A registration process
with a username/password combination is required for any user who
wishes to share data to the site. The default sharing option is “public,”
which makes the data viewable and downloadable by any site user. A
“private” option exists for users who wish to upload data so that they
can access the graph theory analysis tools available on the site, without
making their data accessible to the public. This is also a convenient
option for users to store their data in the cloud and make it available
to them wherever and whenever they may need to download their
data again. Data usage statistics for each CM are kept and displayed on
the “View” page for that CM, including the number of times the dataset
has been downloaded and analyzed. Collectively, ~1.03 million CMs
have been downloaded from the site and ~5900 analyses have been per-
formed using the site's built in graph theory engine. Each matrix has a
unique identification number in the database which can be plugged
into a URLwhere thematrix and relatedmetadata can be downloaded or
viewed, e.g. http://umcd.humanconnectomeproject.org/umcd/default/
update/109 where “109” is the ID number for the Study Name
“ADHD200_CC200” and the Network Name “KKI_2026113.”

There is no quality control process limiting the data that are added to
the database. Again, the assessment of data quality is left to the user of
the site. Data quality can be determined by common sense measures
such as whether or not an associated publication is listed, or whether
the source of the data is a recognized laboratory. Quantitative measures
can be assessed on the data once it is downloaded, such as looking at the
distribution of edge weights, the spatial pattern of edge weights, and
other graph theory measures.

Users have the option of downloading individual CMs via the “View/
Download” link for the network of interest identified on the “Browse
All Data” page. If the full set of data and metadata for a given study is
desired, the user can download it all as one zipped file via the “Browse
Studies” page and the “Download all Data” link for that study. The
data are all made available under the terms of the Creative Commons
Attribution Non-Commercial license. UMCD will continue to be hosted
by the Laboratory of Neuroimaging at the University of Southern
California. Plans are to keep the site running, available to data down-
load, upload, and analysis for the foreseeable future.

“On-the-fly” network analysis and visualization

Any CM on the UMCD can be analyzed “on the fly” via the “Analyze
Network” page. Here, the user can select a CM of interest. They can then
specify the graph theory analysis parameters for weighted or binary
edges, and the percent of edges in the matrix to include. It is important
for the user to keep in mind that certain parameters may be less appro-
priate for certain types of matrices. For example, including 100% of
edges in a functional connectivity matrix may include negative con-
nection strengths, which then will be handled by shifting the entire
distribution to bepositive. Once an analysis is submitted, a report is gen-
erated that displays the network's global network metrics, including
characteristic path length, clustering coefficient, small world attributes,
and nodal network metrics, including degree, betweenness centrality,
clustering coefficient, regional efficiency, participation coefficient, and
modularity membership. All these measures are calculated using func-
tions in the NetworkX Python library, with links to the NetworkX docu-
mentation alongside each that network property in the “Analyzed
Network” report. For each nodal network measure, the network is
shown in both an interactive 3D display (rendered using WebGL) and
static 2D network figures that show nodes and edges as balls and sticks,
with node diameter proportional to a given nodal network measure.
Should the user wish to qualitatively compare each of these measures
for two CMs side by side, they can do so on the “Compare Networks”
page. A more detailed description of the network analysis is provided
in (Brown et al., 2012).

An illustrative meta-analysis

As neuroimaging data continue to accumulate at an accelerating
pace in the near future, it is imperative to maintain unified standards
for dataset compilation and sharing. These efforts will maximize our po-
tential tomake broad comparisons of brain connectivity patterns across
different stages of development and aging, disease conditions, cognitive
states, and imaging modalities. One eventual goal of this rich compila-
tion of data will be to help assess where individuals lie within the spec-
trumof the population (Dosenbach et al., 2010). As a demonstration of a
spectrum, the CMs from 7 different studies in the UMCD comprising
1863 individuals were compared for similarity using a principal compo-
nent analysis. From the plot, it can be seen that CMs from the same
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dataset tend to cluster near each other. The predominant source of
variation appears to be driven by the method used to process the data,
as clouds from the 1000 Functional Connectomes (Fig. 1, left) and
ADHD-200 (dataset 2, cornflower blue) samples, both of which are
task-free fMRI functional connectivity, show substantial separation.
The components intersect on the UCLA autism spectrum disorder data
(ASD; dataset 5), which contains a mixture of tf-fMRI and DTI-based
matrices.

The potential of this approach for data discovery and as a diagnosis
aid is considerable. While the datasets combined in this analysis come
from multiple different imaging modalities and have heterogeneous
processingmethods, future meta-analyses will have to consider the im-
pact of this variability and employ data aggregation methods that ex-
pose meaningful biological commonalities. As an example in this
analysis, it is noteworthy that the tf-fMRI networks from the Wayne
State fetal tf-fMRI study (Thomason et al., 2014) appear more similar
to structural connectivity networks than other functional connectivity
networks. It produces the testable hypothesis that fetal brain connectiv-
ity may be locally distributed and more closely resemble anatomical
connectivity in adults.

Future directions and outstanding issues in connectomics research

When considering psychiatric disease, it would be informative to see
where the connectivity pattern of an individual falls along a spectrum
among children and adolescents that are typically developing or have
received diagnoses of ADHD or ASD. One potential future application
is a brain connectivity search engine where an individual is scanned,
their CM is obtained, and a search is run to find the CMs in the database
that most closely match the query. It would be imprudent to use this
tool exclusively to diagnose a subject but could add to evidence about
the similarity of this individual to a broad database of subjectswith sim-
ilar demographics, symptoms, behavior, and genetics.

As the field of neuroimaging connectomics matures, the UMCD will
need tomature alongwith it. The connectivitymatrices that are current-
ly stored are a very simple format for data representation that does not
have the flexibility necessary to represent details about different
properties of the connections between regions, such as thefiber connec-
tion length, fiber integrity, or various connectivity branching patterns
that can give rise to the same connectivity “strength” (Mitra, 2014).
Previous efforts have been made to create file formats with various
levels of extensibility, such as the subject-specific “netmats” that are de-
rived from data in the Human Connectome Project, the more extensive
CIFTI file format designed as part of the HCP (https://www.nitrc.org/
Fig. 1.A representation of the similarity of 1819 connectivitymatrices (CMs) from7different stu
ed MRI-based structural CMs. Each CM is plotted in two dimensions representing the first two
color coded according to the study it came from. In the middle panel, CMs are color coded in b
autism spectrum disorder (middle cloud) or ADHD (lower cloud). In the right panel, CMs are co
diate age subjects in white, and the oldest subjects in red.
projects/cifti/), or the connectome file format (Gerhard et al., 2011).
The UMCD will continue to serve as a repository for “distilled” formats
of these data, containing relatively sparse and lightweight descriptions
of connectivity such as the regional coordinates, connectivity weights,
and data-processing details, along with pointers to locations on the
web where more detailed information about a dataset can be obtained,
such as the rawdata or the regional parcellation file. TheUMCDwill also
continue to add new graph theory measures to the analysis report as
they become ubiquitous in the field. One example of this the rich club
characteristics (Van Den Heuvel and Sporns, 2011) of a network,
which can be expected in a forthcoming release.

Comparison of networks is another important area of active devel-
opment in neuroimaging connectomics. While the basics of statistical
comparison of global and nodal network properties are largely agreed
upon, many open questions remain. How can dynamic functional
networks derived with a sliding window approach be compared to
one another (Allen et al., 2014; Zalesky et al., 2014)? How do we cope
with degeneracy, the ability to networks with different topology to
perform the same cognitive operation (Fornito et al., 2015)? How
can networks derived from subjects performing a task be compared
with task-free networks (Cole et al., 2014)? The UMCD will continue
to serve as a repository for sharing CMs, rapidly locating them, and
performing a basic visualization of network properties. Software
designed for in-depth statistical comparisons such as the CONN toolbox
(https://www.nitrc.org/projects/conn) will tackle new challenges in
brain network analysis. Other standalone programs provide a more in-
depth visualization of brain networks than what the UMCD is intended
for. Powerful features offered by programs like the BrainNet Viewer (Xia
et al., 2013), theConnectomeVisualizationUtility (LaPlante et al., 2014),
and the ConnectomeWorkbench (http://www.humanconnectome.org/
software/connectome-workbench.html) include visualization of group-
wise statistical differences in networks, detailed neuroanatomical
connectivity maps, and alternative connectivity summaries such as cir-
cular “connectograms.” An example workflow for a connectivity re-
searcher might go as follows: 0) derive CMs from their neuroimaging
data using standard neuroimaging processing software, 1) analyze net-
works with the Brain Connectivity Toolbox, 2) visualize and interpret
their results with the BrainNet Viewer, and 3) publish their study and
share their CMs on the UMCDwith a link to the paper describing the re-
sults, where other researchers can locate the shared data, download it if
desired to visualize and/or analyze it, or perform a subsequent meta-
analysis, and reference the original manuscript. The continuity and di-
versity of this software ecosystem will help ensure that connectomics
data are broadly utilized.
dies shared on theUMCD, including both fMRI-based functional CMs and diffusion-weight-
components of a principal component analysis of all 1819 CMs. In the left panel, each CM
lue if they came from healthy control subjects and in red if they came from diagnoses of
lor coded continuously according to age, with the youngest subjects in dark blue, interme-
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