
ORIGINAL ARTICLES

Altered Structural Brain Connectivity in Healthy
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Abstract

Recently, carriers of a common variant in the autism risk gene, CNTNAP2, were found to have altered functional
brain connectivity using functional MRI. Here, we scanned 328 young adults with high-field (4-Tesla) diffusion
imaging, to test the hypothesis that carriers of this gene variant would have altered structural brain connectivity.
All participants (209 women, 119 men, age: 23.4 – 2.17 SD years) were scanned with 105-gradient high-angular-
resolution diffusion imaging (HARDI) at 4 Tesla. After performing a whole-brain fiber tractography using the full
angular resolution of the diffusion scans, 70 cortical surface-based regions of interest were created from each in-
dividual’s co-registered anatomical data to compute graph metrics for all pairs of cortical regions. In graph theory
analyses, subjects homozygous for the risk allele (CC) had lower characteristic path length, greater small-worldness
and global efficiency in whole-brain analyses, and lower eccentricity (maximum path length) in 60 of the 70 nodes
in regional analyses. These results were not reducible to differences in more commonly studied traits such as fiber
density or fractional anisotropy. This is the first study that links graph theory metrics of brain structural connec-
tivity to a common genetic variant linked with autism and will help us understand the neurobiology of the circuits
implicated in the risk for autism.
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Introduction

Many neuropsychiatric disorders are thought to
involve disrupted brain connectivity, but very little

is known about what causes brain connectivity to vary in
human populations. Total brain volume (Posthuma et al.,
2000), cortical thickness (Schmitt et al., 2008; Thompson
et al., 2001), and measures of white matter integrity derived
from diffusion tensor imaging (DTI) (Chiang et al., 2009,
2011a; Pfefferbaum et al., 2001) are all under moderately
strong genetic control. By analyzing very large cohorts (on
the order of 20,000 subjects) with MRI and genome-wide
scans (Stein et al., 2012), we recently discovered commonly
carried genetic variants that are associated with differences
in brain structure. Since these studies searched the genome
for effects of up to a million single nucleotide polymor-

phisms (SNPs), very large samples were needed to reduce
the risk of false-positive associations. An alternative ap-
proach is to study the candidate genes already associated
with disease risk. For instance, young adults who carry the
Alzheimer’s risk allele CLU-C have lower white matter in-
tegrity in DTI scans of the brain, as measured by fractional
anisotropy (FA) (Braskie et al., 2011). In addition, common
variants in the growth factor genes, BDNF and NTRK1, are
also associated with altered white matter integrity, making
it possible to predict a small proportion of individual differ-
ences in brain integrity by genotyping multiple common
variants (Kohannim et al., 2011). These early DTI genetics
studies have generally mapped brain integrity using maps
of FA, either broadly across the brain (Braskie et al., 2011),
or in specific brain regions (Chiang et al., 2009; McIntosh
et al., 2008; Winterer et al., 2008). Methods that assess brain
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connectivity may be useful in gauging how these variants af-
fect white matter organization overall. Even so, no studies
have yet linked the graph metrics of structural brain connec-
tivity to any specific genetic variants. The power to detect
gene effects is limited in small samples, so we scanned a fairly
large cohort of twins (118 identical twins, 183 fraternal twins,
and 27 nontwin siblings) with high angular resolution diffu-
sion imaging (HARDI), at a relatively high magnetic field
(4 Tesla).

The recently discovered autism risk gene, CNTNAP2, en-
codes CASPR2, or contactin-associated protein-like 2, a
member of the neurexin superfamily of transmembrane pro-
teins. CASPR2 is involved in clustering voltage-gated potas-
sium channels (Kv1.1) at the nodes of Ranvier (Strauss et al.,
2006; Vernes et al., 2008). CASPR2 has a suggested develop-
mental role as a cell adhesion molecule responsible for neu-
roblast migration and laminar organization (Arking et al.,
2008; Bakkaloglu et al., 2008; Vernes et al., 2008). In a
study of an Amish family, a deletion mutation in CNTNAP2
was linked with a disorder with many hallmarks of autism,
involving seizures, language difficulties, and impaired so-
cial abilities (Strauss et al., 2006). Subsequent research in
both autistic and language-impaired (but nonautistic) popu-
lations has discovered further support that CNTNAP2 is as-
sociated with autism (Alarcón et al., 2008; Arking et al.,
2008; Bakkaloglu et al., 2008) and language ability (Alarcón
et al., 2008; Vernes et al., 2008). A recent study characterizing
CNTNAP2 knockout mice found behavioral deficits charac-
teristic of autism—namely, seizures—as well as neuronal
migration abnormalities, reduced interneuron density, and
abnormal neuronal network activity (Peñagarikano et al.,
2011). CNTNAP2 expression is highest in the frontal and
temporal lobes (Abrahams et al., 2007; Arking et al., 2008;
Bakkaloglu et al., 2008; Vernes et al., 2008), areas responsible
for language abilities, particularly in the left hemisphere
(Baynes et al., 1998), supporting the link between CNTNAP2
and language function. Stein et al. (2011) found that a
CNTNAP2 SNP (rs2710102) was associated with increased
risk for selective mutism, an anxiety disorder in which a
child is unable or unwilling to speak in certain situations,
despite having normal language abilities in other situations.
This disorder is similar, in some respects, to autism; they
both involve characteristic deficits in language and social
interactions.

In a recent analysis of functional brain connectivity using
functional MRI, Scott-Van Zeeland et al. (2010) compared
risk and nonrisk allele carriers of CNTNAP2 (rs2710102) in
a cohort consisting of both autistic and typically developing
children. Children with the genetic risk allele did not show
the same left-lateralized pattern of medial prefrontal cortex
connectivity as noncarriers. This association was consistent
with previous research linking CNTNAP2 to language abil-
ity. Scott-Van Zeeland et al. also found stronger long-
range anterior-posterior connections in the nonrisk subjects
and stronger short-range frontal lobe connectivity in the at-
risk subjects. Since short-range connections are typically
pruned and long-range ones are strengthened over the
course of development (Dosenbach et al., 2010; Hutten-
locher, 1990), this may be evidence of delayed development
in those at risk.

The graph theory can quantify brain connectivity at the
network level. This branch of mathematics—for describing

and analyzing graphs—examines brain networks as collec-
tions of nodes (i.e., specific brain regions) and edges (connec-
tions between those regions) (Sporns et al., 2004). The
complex web of brain structural or functional connectivity
may be quantified using a number of key parameters that
summarize network characteristics. Path length, for example,
is a measure of the distance (i.e., number of edges) between
one brain region and another (Rubinov and Sporns, 2010).
A network with a shorter average path length is considered
more efficient in terms of information transfer (Bullmore
and Sporns, 2009). We recently found these metrics to be her-
itable in this same sample (Dennis et al., 2011).

Here, we set out to investigate how variations in a
CNTNAP2 SNP (rs2710102) might relate to graph theoretical
measures from diffusion-weighted MRI. Further impetus for
this work came from a recent report that found an associa-
tion between a different CNTNAP2 SNP (rs7794745) and
FA (Tan et al., 2010). Tan et al. (2010) found lower FA in in-
dividuals homozygous for the risk allele in a number of re-
gions implicated in autism, including the cerebellum,
fusiform gyrus, occipital, and frontal cortices. Given this
previous success in linking a different CNTNAP2 SNP
with structural connectivity, we decided that this might be
a promising method for understanding the results of Scott-
Van Zeeland et al., who found an association between our
CNTNAP2 SNP (rs2710102) and alterations in functional
connectivity. Functional and structural connectivity are
closely related, with functional connectivity existing be-
tween areas that are structurally connected; yet functional
connections may exist where no structural connections
exist (Honey et al., 2009). Results from these different mo-
dalities may assess different types of connectivity, but they
are complementary and together generate a more complete
picture of brain networks. In some cases but not others, dif-
ferences in functional synchronization may be explained by
detectable differences in structural connections. Addition-
ally, findings from different modalities may discover the
general principles of neural organization from multiple
very different modalities, such as network hubs, small-
world properties, as well as metrics of efficiency and resil-
ience to disruption. Previous research associating CNTNAP2
with cognitive or behavioral traits focused on autistic popu-
lations or people with known language difficulties. To test
whether this very common genetic variant leads to detect-
able brain differences outside of populations with language
or developmental disorders, we focused on healthy adults
with normal variations in language ability. Since Scott-Van
Zeeland et al. (2010) were able to find and replicate
CNTNAP2’s association with brain connectivity in a popula-
tion of both autistic and typically developing children, we
hypothesized that we might be able to detect differences in
the structural networks of healthy normal carriers of the
CNTNAP2 risk allele (rs2710102). In this study, we assessed
both global and hemisphere-specific brain network proper-
ties. We recently reported on genetically influenced left-
right asymmetries in white matter tracts ( Jahanshad et al.,
2010). Given those asymmetries, we expected that the rela-
tionship between CNTNAP2 and network measures might
differ by hemisphere, as CNTNAP2 is linked with language
ability (Alarcón et al., 2008; Vernes et al., 2008)—a generally
left-lateralized function (Baynes et al., 1998). As such, we
tested for the effects on each hemisphere independently.
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Materials and Methods

Participants

Participants were recruited as part of a 5-year research pro-
ject examining healthy young adult Australian twins using
structural MRI and DTI with a projected sample size of
*1150 at completion (de Zubicaray et al., 2008). Our analysis
included 328 right-handed subjects (209 women/119 men,
average age = 23.4, SD = 2.17). This population included 118
monozygotic (MZ) twins, 183 dizygotic (DZ) twins, and 27
nontwin siblings, from 189 families. The population was ra-
cially homogenous: 100% of subjects were Caucasian. In stud-
ies of genetic variations, a genetically homogenous
population is preferable to avoid incorrectly ascribing effects
to alleles that have different frequencies in different racial/
ethnic groups. The subjects were screened to exclude those
with a history of significant head injury, neurological or psy-
chiatric illness, substance abuse or dependence, or who had a
first-degree relative with a psychiatric disorder. All the partic-
ipants were right handed, as assessed by 12 items on the
Annett’s Handedness Questionnaire (Annett, 1970). The
study participants gave informed consent; the institutional
ethics committees at the Queensland Institute of Medical
Research, the University of Queensland, the Wesley Hospital,
and at UCLA approved the study.

Establishing zygosity and genotyping

Zygosity was established objectively by typing nine inde-
pendent DNA microsatellite polymorphisms (polymorphism
information content > 0.7), using standard polymerase chain
reaction methods and genotyping. Results were cross-
checked with blood group (ABO, MNS, and Rh), and pheno-
typic data (hair, skin, and eye color), giving an overall
probability of correct zygosity assignment > 99.99%. Genomic
DNA samples were analyzed on the Human610-Quad Bead-
Chip (Illumina) according to the manufacturer’s protocols
(Infinium HD Assay; Super Protocol Guide; Rev. A, May
2008). For our SNP of interest, rs2710102, 47 (20.1%) were ho-
mozygous for the nonrisk allele (TT), 111 (47.4%) subjects
were heterozygous for the risk allele (TC), and 76 (32.5%) sub-
jects were homozygous for the risk allele (CC).

Scan acquisition

Whole-brain anatomical and HARDI were collected with a
4T Bruker Medspec MRI scanner. T1-weighted anatomical
images were acquired with an inversion recovery rapid gradi-
ent echo sequence. The acquisition parameters were as fol-
lows: TI/TR/TE = 700/1500/3.35 ms; flip angle = 8�; slice
thickness = 0.9 mm, with an acquisition matrix of 256 · 256.
Diffusion-weighted images (DWIs) were also acquired
using single-shot echo planar imaging with a twice-refocused
spin echo sequence to reduce eddy-current induced distor-
tions. The acquisition parameters were optimized to provide
the best signal-to-noise ratio (SNR) for estimation of diffusion
tensors ( Jones et al., 1999). The imaging parameters were as
follows: 23 cm FOV, TR/TE 6090/91.7 ms, with a 128 · 128 ac-
quisition matrix. Each three-dimensional (3D) volume con-
sisted of fifty-five 2-mm-thick axial slices with no gap and
1.79 · 1.79 mm2 in-plane resolution. One hundred five images
were acquired per subject: 11 with no diffusion sensitization
(i.e., T2-weighted b0 images) and 94 DWIs (b = 1159 s/mm2)

with gradient directions evenly distributed on the hemi-
sphere. The scan time for the HARDI scan was 14.2 min.

Cortical extraction and HARDI tractography

Connectivity analysis was performed as in Jahanshad et al.
(2011). Briefly, nonbrain regions were automatically removed
from each T1-weighted MRI scan, and from a T2-weighted
image from the DWI set, using the FSL tool ‘‘BET’’ (FMRIB
Software Library, http://fsl.fmrib.ox.ac.uk/fsl/). A trained
neuroanatomical expert manually edited the T1-weighted
scans to further refine the brain extraction. Total brain
volume estimates were obtained from the manually edited
full-brain mask, including cerebral, cerebellar, and brainstem
regions. All the T1-weighted images were linearly aligned
using FSL (with 9 DOF) to a common space (Holmes et al.,
1998) with 1 mm isotropic voxels and a 220 · 220 · 220 voxel
matrix. Raw DWIs were corrected for eddy current distor-
tions using the FSL tool, ‘‘eddy_correct’’ (http://fsl.fmrib.ox
.ac.uk/fsl/). For each subject, the 11 eddy-corrected images
with no diffusion sensitization were averaged, linearly
aligned, and resampled to a downsampled version of their
corresponding T1 image (110 · 110 · 110, 2 · 2 · 2 mm). Aver-
aged b0 maps were elastically registered to the structural scan
using a mutual information cost function (Leow et al., 2005)
to compensate for echo planar imaging (EPI)-induced suscep-
tibility artifacts.

Thirty-five cortical labels per hemisphere, as listed in the
Desikan–Killiany atlas (Desikan et al., 2006), were automati-
cally extracted from all aligned T1-weighted structural MRI
scans using FreeSurfer (http://surfer.nmr.mgh.harvard
.edu/). The Desikan–Killiany atlas lists 34 cortical regions
per hemisphere that are based on the main cortical gyri,
and FreeSurfer adds the insula to make a total of 35 cortical
regions for each hemisphere. A complete list of the regions in-
cluded is found in Jahanshad et al. (2011). Other parcellations
are possible, and some may be more sensitive in principle to
picking up gene effects. Previous work by our lab found that
connectivity maps based on these 70 regions can be used to
detect genetic influences on brain connections (in terms of
gross heritability rather than SNP effects); so, we planned
our SNP analyses based on this parcellation ( Jahanshad
et al., 2011; Joshi et al., 2010). The Desikan–Killiany atlas
has been widely used for structural connectivity analysis
(Hagmann et al., 2010; Honey et al., 2009). Even so, there is
ongoing work in the field aiming at optimizing the cortical
parcellation for network analyses, and at understanding
how different parcellation schemes may influence different
kinds of network measures (Bassett et al., 2011; Zalesky
et al., 2010). Since a linear registration is performed by the
software, the resulting T1-weighted images and cortical mod-
els were aligned to the original T1 input image space and
down-sampled using nearest-neighbor interpolation (to
avoid intermixing of labels) to the space of the DWIs. To en-
sure the tracts intersect cortical labeled boundaries, the labels
were dilated with an isotropic box kernel of five voxels.

The transformation matrix from the linear alignment of the
mean b0 image to the T1-weighted volume was applied to
each of the 94 gradient directions to properly re-orient the ori-
entation distribution functions (ODFs). At each HARDI voxel,
the ODFs were computed using the normalized and dimen-
sionless ODF estimator, derived for q-ball imaging in
(Aganj et al., 2010). We performed HARDI tractography on
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the linearly aligned sets of DWI volumes using these ODFs.
Tractography was performed using the Hough transform
method as described in (Aganj et al., 2011). Briefly, tractogra-
phy was performed after linearly aligning and scaling the
DWI data to anatomical (T1-weighted) image space. Since a
linear transform was applied to the diffusion-weighted im-
ages, we also reoriented the gradient table so that the tract
tracing algorithm could correctly follow the dominant direc-
tion of diffusion. The table of gradient vectors was corrected
to reflect the nonrigid transformation by applying the same
transformation to each directional gradient vector. Running
tractography after re-orienting the images, as we did here,
might slightly affect the SNR of the diffusion signals, as it
would act as a very mild spatial filter on the data.

Elastic deformations obtained from the EPI distortion cor-
rection, mapping the average b0 image to the T1-weighted
image, were then applied to the tracts’ 3D coordinates for ac-
curate alignment of the anatomy. Each subject’s dataset con-
tained 2,000–10,000 useable fibers (3D curves). Fibers were
filtered to eliminate those likely to be erroneous. All duplicate
fibers were removed; those with a very small number of
points ( < 5) were considered unreliable and were also re-
moved.

For each subject, a full 70 · 70 connectivity matrix was cre-
ated. Each element described the proportion of the total num-
ber of fibers connecting each of the labels; the diagonal
elements of the matrix describe the total number of fibers
passing through a certain cortical region of interest. Since
these values were calculated as a proportion, they were nor-
malized to the total number of fibers traced for each individ-
ual participant, so that the results could not be skewed by raw
fiber count.

Graph theory analyses

On the 70 · 70 matrices just generated, we used the Brain
Connectivity Toolbox (Rubinov and Sporns, 2010; https://
sites.google.com/a/brain-connectivity-toolbox.net/bct/Home)
to compute two standard measures of nodal brain connectivity—
regional efficiency (EREG) and eccentricity (ECC). EREG is
the global efficiency (EGLOB) computed for each node and
is related to the clustering coefficient (Latora and Marchiori,
2001). ECC is the longest characteristic path length (CPL)
for any given node (Sporns, 2002). We also computed five
standard measures of global brain connectivity—CPL, mean
clustering coefficient (MCC), EGLOB, small-worldness
(SW), and modularity (MOD) (Rubinov and Sporns, 2010).
CPL is a measure of the average path length in a network,
with path length being the minimum number of edges that
should be traversed to get from one node to another. MCC
is a measure of how many neighbors of a given node are
also connected to each other, in proportion with the maxi-
mum number of connections in the network. EGLOB is in-
versely related to CPL; networks with a small, average CPL
are generally more efficient than those with a large, average
CPL. SW represents the balance between network differenti-
ation and network integration, calculated as a ratio of local
clustering and CPL of a node relative to the same ratio in a
randomized network. We created 10 simulated random net-
works. The ratio of the clustering coefficient in our network
to the clustering coefficient in the simulated random net-
works was denoted by c (gamma). The ratio of the CPL in

our network to the CPL in the simulated random network
was denoted by k (lambda). These measures were generated
in the same way as the others, integrated across a range, and
are listed in the results tables alongside MCC and CPL but
were not entered into any association analyses. MOD is the
degree to which a system can be subdivided into smaller net-
works (Bullmore and Bassett, 2011). The equations to calcu-
late each of these measures can be found in Rubinov and
Sporns (2010).

One step in graph theory analysis is selecting a threshold
for the network, termed the sparsity. Networks with a spar-
sity of 0.2 retain only 20% of the connections of the ‘‘full-
sparsity’’ network. Selecting a single sparsity level may
arbitrarily affect the network measures, so we computed
measures at multiple sparsities, and integrated across that
range to generate more stable scores. We calculated these
measures for the whole brain over a range of sparsities
(0.2–0.3, in 0.01 increments), and calculated the area under
the curve of those 11 data points to generate an integrated
score for each measure. Twenty-three participants completed
two separate scanning sessions 3 months apart in which DTI
data were collected. The measures were calculated for both
scans for each of these participants over the whole range of
sparsities, and we found that the range 0.2–0.3 gave the
most stable network measures. Supplementary Figure S1
(Supplementary Data are available online at www.lieberton-
line.com/brain) shows the calculations of all five network
measures plotted for both groups across the sparsity range
0–0.5. These graphs show that at very low sparsities, the
graphs are not stable, while we know that higher sparsities
are less biologically plausible (Sporns, 2011). We also calcu-
lated the network measures for the left and right hemispheres
independently. We hypothesized that we would find evi-
dence of altered structural connectivity between the two
groups and, thus, started with global graph theory measures
of connectivity. We calculated efficiency at a regional level by
considering these measures at each node, to see whether our
results were attributable to differences in certain brain re-
gions. For these regional measures, we calculated the mea-
sures over the same range of sparsities and integrated them
over that range. We calculated ECC at a regional level as
well. We not only ran post hoc association analyses on the
raw fiber density matrices to see whether there were overall
differences in connectivity but also ran the analyses on a sub-
set of connections, just those with one terminus in the frontal,
parietal, or temporal cortex.

Association controlling for relatedness

We performed a mixed-model regression for each network
measure to find the association of the SNP while incorporat-
ing a model accounting for family relatedness (Kang et al.,
2008). When family members are analyzed, the relatedness
among members of the sample should be taken into account,
and each individual cannot be treated as independent as
some share part (in the case of siblings and DZ twins) or all
(MZ twins) of their genome. This analysis was performed
using Efficient Mixed-Model Association (EMMA; http://
mouse.cs.ucla.edu/emma/) within the R statistical package
(version 2.9.2; www.r-project.org). A symmetric n · n kinship
matrix was constructed to describe the relationship of every
subject to all others. A kinship matrix coefficient of 1 denoted
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the relationship of each subject to himself/herself; the coeffi-
cient for MZ twins within the same family was 1; the coeffi-
cient for DZ twins and siblings within the same family was
0.5; and the coefficient for subjects not in the same family
was 0. Ancestry outliers were removed, so no additional
modeling was used in the kinship matrix to adjust for popu-
lation genetic structure between families. The association of
SNP rs2710102 was tested for all network measures just de-
scribed according to the following formula:

y = XbþZuþ e

Here, y is a vector representing the network property; X is a
matrix of fixed effects containing the genetic effect of the
SNP for each subject (coded additively or using other models
that combine genotype groups; see above) and a constant
term; b is a vector representing the fixed-effect regression co-
efficients; Z is an identity matrix; u is the random effect with
Var(u) = r2

gK, where K is the kinship matrix; and e is a matrix
of residual effects with Var(e) = r2

eI. Age and sex were in-
cluded as covariates.

False discovery rate correction for multiple comparisons

All results were controlled for multiple comparisons using
the standard false discovery rate (FDR) method (Benjamini
and Hochberg, 1995). The FDR is the expected proportion
of false positives among results that are declared significant.
Simply setting the alpha at a value of 0.05 implies that 5% of
the results are expected to be false positives. An FDR q value
of 0.05, as used in this article, implies that, on average across
experiments, 5% of the results declared significant are
expected to be false positives.

Results

Carriers of two (CC) but not just one (CT) risk allele have
a higher risk of speech development delay and/or impair-
ment (see SNPedia, at www.snpedia.com/index.php/
Rs2710102). Thus, we coded our analyses in a recessive fash-
ion (with regard to the major risk allele), where individuals
homozygous for the risk allele formed one group, and those
heterozygous for the risk allele or carrying no copies of the
risk allele formed the other group. Graph theory measures
depend on a choice of threshold on the strength of connec-
tivity, which may be thought of as a sparsity level: pruning
away weaker connections leads to a sparser network model.
To avoid this dependency, which could lead to arbitrary
thresholding effects in the results, connectivity measures
were integrated across a range of sparsities (0.2–0.3), as
this range was the most stable in an initial analysis (see
Methods section for definitions, and Supplementary Fig. S1).
This range of sparsities also makes sense biologically, as dem-
onstrated in a number of studies (Sporns, 2011). All the ana-
lyses given next were run on integrated scores calculated in
this way.

Results—whole brain measures

We tested associations of the rs2710102 CNTNAP2 SNP
with five commonly studied network measures: CPL, MCC,
EGLOB, SW, and MOD. The allele dose at the SNP (i.e., the
number of risk alleles) was significantly associated with the
CPL in the whole-brain structural network (b = 0.17,

p = 0.0069), as well as SW (b =�0.6, p = 0.00068) and EGLOB
(b =�0.09, p = 0.00099) in the left hemisphere and the
EGLOB in the right hemisphere (b =�0.077, p = 0.0056).
Here, b represents the unnormalized slope of the regression
coefficient, where the at-risk group is coded as 0, and the
non-at-risk group is coded as 1. These results remained signif-
icant after correcting for multiple comparisons using the FDR
procedure (Benjamini and Hochberg, 1995) across all 15 tests
performed (5 in the left hemisphere, 5 in the right hemisphere,
and 5 for whole brain, q < 0.05). Individuals homozygous for
the risk allele (N = 99) had greater EGLOB in both hemi-
spheres and greater SW in the left hemisphere. Individuals
carrying one or no copies of the risk allele (N = 229) had a
greater CPL in the whole-brain structural network. The
whole-brain results, with significant results bolded, along
with average values for each group, are shown in Table 1.
They are visualized in Figures 1 and 2.

Results—EREG

Our association analysis of the rs2710102 CNTNAP2 SNP
with the EREG of each node, integrated across sparsities .2–
.3, yielded results in 11 of the 70 nodes that passed p < 0.05
but did not pass the more stringent FDR correction. These re-
sults, along with average values for each group, are shown in
Table 2. To preserve space, only nodes passing p < 0.05 are
presented in Table 2.

Table 1. Global Results from CNTNAP2 Association

Analysis for Integrated Graph Theory Metrics

for Whole Brain and Left and Right

Hemispheres Separately

Global measures—recessive model

Measure

Risk
average

(CC)

Nonrisk
average

(CT and TT) b
p

value

Whole brain
CPL/k 17.5/10.09 17.67/10.16 0.17 0.0069
MCC/c 8.57/13.74 8.35/14.27 �0.2 0.21
EGLOB 6.16 6.1 �0.049 0.032
SW 13.52 14 0.51 0.021
MOD 5.64 5.53 �0.09 0.12

Left hemisphere
CPL/k 19.16/10.67 19.04/10.69 �0.11 0.17
MCC/c 6.13/17.64 6.16/17.10 0.038 0.54
EGLOB 5.6 5.51 �0.09 0.00099
SW 16.57 15.96 �0.6 0.00068
MOD 4.54 4.44 �0.098 0.16

Right hemisphere
CPL/k 19.02/10.62 18.95/10.66 �0.084 0.3
MCC/c 6.35/17.37 6.36/17.24 0.02 0.79
EGLOB 5.64 5.56 �0.077 0.0056
SW 16.33 16.14 �0.17 0.31
MOD 4.39 4.28 �0.11 0.079

Significant results are bolded. Results pass FDR correction for mul-
tiple comparisons across all 15 p values.

Whole-brain results showing CNTNAP2 SNP associations with
graph theory measures of structural connectivity. Results are sepa-
rated by hemisphere and are shown for the recessive model’s SNP
effect.

CPL, characteristic path length; MCC, mean clustering coefficient;
EGLOB, global efficiency; SW, small-worldness, MOD, modularity;
FDR, false discovery rate; SNP, single nucleotide polymorphism.

ALTERED STRUCTURAL CONNECTIVITY IN AUTISM RISK GENE, CNTNAP2 451



Results–ECC

To more fully examine the distribution of path lengths in
the network, we tested the effect of CNTNAP2 on ECC, a
nodal measure of the maximal shortest path length for each
node, meaning the length computed between that node and
the farthest node it is connected to. Given the significant re-
sults in CPL, EGLOB, and SW, all of which are related to
path length, we decided to look further into other measures
related to path length. Of course, these are not entirely inde-
pendent analyses, and should be considered post hoc and ex-
ploratory. Our analyses of the associations between the
rs2710102 CNTNAP2 SNP and the ECC of each node, inte-
grated across sparsities .2–.3, yielded significant results for
60 of the 70 nodes, 30 in the left hemisphere and 30 in the
right hemisphere, as seen in Figure 3 (q < 0.05). These results
are displayed in Figure 3 along with averages and resultant
b and p values in Table 3. To preserve space, only nodes pass-
ing q < 0.05 are presented in Table 3.

Post hoc analysis—additive and dominant models

Based on evidence that only carriers of two risk alleles
(CC) are affected (see SNPedia, at www.snpedia.com/in-
dex.php/Rs2710102), we started with a recessive model,

with carriers of the CC genotype forming one group and
those with CT or TT forming the other. However, we also
ran post hoc analyses with the other two possible models: ad-
ditive, in which each genotype forms one group, and domi-
nant, in which the CC and CT genotypes form one group
and participants with the TT genotype form the other
group. In the additive model, we detected significant associ-
ations between allele dose and CPL in the whole-brain net-
work (b = 0.10, p = 0.0096), and EGLOB (b =�0.062,
p = 0.00041) and SW (b =�0.34, p = 0.0030) in the left hemi-
sphere. The global post hoc results that survive multiple com-
parisons correction are presented in Table 4 (q < 0.05). For the
whole-brain measures in the dominant model, none of the
measures were significantly associated with the allele dose
at the SNP. For the EREG analyses, the additive model
yielded results in 14 nodes ( p < 0.05), as shown in Supple-
mentary Table S1. The dominant model yielded results in
five nodes as well ( p < 0.05). Neither of these passed FDR
correction. These results can be seen in Supplementary
Table S2. For the analysis of nodal eccentricities, in the addi-
tive model, there were results in 64 of the 70 nodes that
passed FDR correction. Six nodes were found to be signifi-
cant here that had not been originally found in the recessive
model, and two were not found in the additive model

FIG. 1. Global results of CNTNAP2 association with graph theory metrics for the whole brain. The radius of each node is
proportional to the inverse of the p value for the comparison between risk (CC) and nonrisk (CT, TT) subjects in the measure
of eccentricity. Thus, larger radii indicate nodes showing significant differences between the two groups. Significant nodes are
in blue, and nonsignificant nodes are in white. Nodes are labeled with numbers: the legend on the figure lists numbers as they
correspond to regions in each hemisphere. Additionally, differences in paths are shown in this figure. Paths that both risk and
nonrisk groups have are in gray, those only present in the risk group are in red, and those only present in the nonrisk group are
in green. Nodes are labeled with numbers; the legend in the figure lists numbers in each hemisphere as they correspond to
regions. Figures 1 and 2 were generated at sparsity = 0.25, using the UCLA Multimodal Connectivity Package (https://github
.com/jbrown81/umcp).
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that had been found with the recessive. The two nodes that
were significant in the recessive model but not in the addi-
tive model were the left fusiform and right insula. The six
nodes that were significant in the additive model but not
in the recessive model were the left inferior parietal lobule,
left isthmus of the cingulate, left supramarginal gyrus,
right bank of the superior temporal sulcus, right cuneus,
and right pericalcarine cortex. In the dominant model,

there were no significant associations with group member-
ship.

Post hoc analysis—fiber density in frontal,
parietal, and temporal lobes and FA

We had initially analyzed whether our two groups differed
in their whole fiber density matrices, that is, the number of

FIG. 2. Global results of
CNTNAP2 association with
graph theory metrics for each
hemisphere separately. As in
Figure 1, larger radii indicate
nodes showing significant
differences between the two
groups in the measure of
eccentricity. Significant nodes
are in blue, and
nonsignificant nodes are in
white. Gray paths are present
in both groups, red in risk
only, and green in nonrisk
only. Nodes are labeled with
numbers; the legend in the
figure lists numbers in each
hemisphere as they
correspond to regions.
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fibers per unit volume connecting each node, and found no sig-
nificant differences. Given the promising findings suggesting
associations with global and nodal network measures, we
ran post hoc tests on the fiber density in the frontal and tempo-
ral lobes, where CNTNAP2 gene expression is enriched (Abra-
hams et al., 2007; Arking et al., 2008; Strauss et al., 2006; Vernes
et al., 2008). In addition, Scott-Van Zeeland et al. had found as-
sociations between this gene and measures of functional con-
nectivity in the frontal and parietal lobes; so, we included
parietal nodes in this analysis as well. The nodes counted in
this subset are listed in Supplementary Table S3. There was a
trend for greater fiber density in the nonrisk subjects in all
three lobes, but these results did not pass FDR correction.
We also checked whether our two groups differed in FA or ap-
parent diffusion coefficient (ADC) along the tracts connecting
each node and found no association for any of the connections.
One reason we focused our genetic analysis on FA was that we
had completed a series of earlier papers that aimed at finding
out which DTI-derived measures were most highly heritable.
In a twin sample scanned with DTI, it is possible to estimate
the proportion of variance in a measure that is attributable to
genetic variation, by examining covariances between different
types of twins (MZ and DZ). In these early analyses, FA was
found to be highly heritable (Lepore et al., 2008) and so were
the three diffusion eigenvalues when treated as a multivariate
vector (Lee et al., 2009a). The full tensor was also highly heri-
table, so long as the meaning of heritability was appropriately
redefined using a Lie group metric to measure tensor differ-
ences (Lee et al., 2009b, 2010). Since FA was more highly her-
itable than mean diffusivity, we preferred to use it as the
target for our subsequent genetic association analyses (Braskie
et al., 2011, Jahanshad et al., 2012). In addition, we weighted
our fiber density matrices to emphasize those tracts that are
expected to be more heavily myelinated by multiplying our
fiber density and FA matrices element wise; even so, we

found no associations between the CNTNAP2 dose and those
values. Thus, the global and nodal network differences in car-
riers of the risk gene were not readily reducible to the effects on
more common network properties, such as fiber density.

Post hoc analysis—interhemispheric connections

Given evidence that individuals with autism may have ab-
normalities in interhemispheric connectivity ( Just et al., 2007),
we generated 35 · 35 matrices of interhemispheric connec-
tions for all participants. We analyzed these for differences
in fiber density for these interhemispheric connections be-
tween the two groups, and found no significant differences
that passed FDR correction. We also analyzed whether the
number of interhemispheric connections present differed be-
tween the groups, meaning the number of elements in the
35 · 35 matrix where > 95% of the subjects had nonzero
entries, again finding no significant differences.

Discussion

In this study, we found that carriers of a common variant in
the autism risk gene, CNTNAP2, had differences in structural
brain connectivity computed from high-field DTI. Graph the-
ory measures differed in individuals homozygous for the risk
allele. This higher-risk group had shorter CPL in the whole-
brain network, greater SW and greater EGLOB in the left

Table 2. Results from Integrated Regional

Efficiency Analysis in Recessive Model

Regional efficiency–recessive model

Node

Risk
average

(CC)

Nonrisk
average

(CT and TT) b
p

value

L caudal anterior
cingulate

9.20 8.77 �0.44 0.0061

L caudal middle frontal 8.24 7.78 �0.45 0.0062
L pars triangularis 5.63 5.56 �0.060 0.048
L superior frontal 6.63 6.72 0.094 0.0034
L superior parietal 6.32 6.40 0.080 0.0046
L frontal pole 5.36 5.04 �0.27 0.016
R inferior frontal 6.11 6.02 �0.078 0.013
R pars triangularis 5.75 5.66 �0.097 0.017
R rostral anterior

cingulate
6.00 5.90 �0.11 0.0074

R superior temporal 6.02 5.97 �0.056 0.036
R frontal pole 5.33 4.93 �0.34 0.012

Nonrisk (CT and TT) coded as ‘‘1’’ and risk (CC) coded as ‘‘0’’ such
that positive b value indicates greater average in nonrisk participants.
Only results passing p < 0.05 are presented.

Regional efficiency results showing CNTNAP2 SNP associations
with graph theory measures according to recessive model.

L, left; R, right.

FIG. 3. Image of nodes showing association between eccen-
tricity and the CNTNAP2 allele dose in the recessive model.
Results pass false discovery rate correction for multiple com-
parisons across all 70 nodes. Colors differentiate each node,
with the same color representing one node bilaterally. See
Table 3 for color code. From top to bottom, left to right, slices
are as follows: Z = 46, Z = 60, Y = 41, Y = 52, Y = 70, X = 36, and
X = 72.
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Table 3. Significant Results from Integrated Eccentricity Analysis in Recessive Model

Eccentricity

Node Risk average (CC) Nonrisk average (CT and TT) b p value

L banks of the superior temporal sulcus (lime green) 12.81 15.33 2.4 0.013
L caudal anterior cingulate (purple) 14.21 16.28 2.1 0.011
L caudal middle frontal (dark blue) 16.66 18.79 2.1 0.0078
L cuneus (magenta) 20.96 22.40 1.5 0.026
L entorhinal (green) 21.17 22.38 1.3 0.011
L fusiform (dark magenta) 21.30 22.34 1.0 0.014
L inferior temporal (magenta) 21.66 22.89 1.3 0.012
L lateral occipital (light blue) 21.66 22.95 1.3 0.013
L lateral orbitofrontal (dark blue) 21.16 22.37 1.3 0.0017
L lingual (magenta) 21.63 22.69 1.1 0.023
L medial orbitofrontal (gold) 21.09 22.05 1.0 0.0072
L middle temporal (red) 21.72 23.06 1.3 0.012
L parahippocampal (pale yellow) 21.53 22.79 1.3 0.011
L paracentral (gold) 21.25 22.30 1.1 0.0046
L pars opercularis (dark blue) 21.93 23.18 1.3 0.017
L pars orbitalis (orange) 22.00 23.41 1.4 0.026
L pars triangularis (red) 21.78 23.15 1.4 0.013
L peri-calcarine (pink) 21.67 22.77 1.1 0.025
L postcentral (gold) 21.70 22.83 1.1 0.025
L posterior cingulate (blue) 21.23 22.20 0.93 0.014
L pre-central (blue) 21.41 22.45 1.0 0.013
L precuneus (yellow-green) 21.38 22.28 0.9 0.026
L rostral anterior cingulate (dark purple) 21.36 22.38 1.0 0.018
L rostral middle frontal (orange) 21.50 22.73 1.2 0.0075
L superior frontal (red) 21.29 22.23 0.93 0.017
L superior parietal (green) 21.50 22.48 1.0 0.024
L superior temporal (forest green) 21.71 22.91 1.2 0.015
L temporal pole (dark blue) 21.85 23.17 1.3 0.017
L transverse temporal (dark blue) 21.98 23.53 1.4 0.032
L insula (lime green) 21.53 22.45 0.9 0.038
R caudal anterior cingulate (purple) 21.46 22.58 1.0 0.021
R caudal middle frontal (dark blue) 21.37 22.42 1.0 0.013
R cuneus (magenta) 21.77 23.10 1.3 0.017
R fusiform (dark magenta) 21.19 22.22 1.0 0.011
R inferior parietal (yellow) 21.44 22.46 1.0 0.023
R inferior temporal (magenta) 21.55 22.72 1.1 0.031
R isthmus of the cingulate (lime green) 21.28 22.39 1.0 0.017
R lateral occipital (light blue) 21.45 22.47 1.0 0.02
R lateral orbitofrontal (dark blue) 21.17 22.25 1.0 0.013
R lingual (magenta) 21.42 22.47 1.0 0.025
R medial orbitofrontal (gold) 21.02 22.03 1.1 0.0034
R middle temporal (red) 21.80 23.01 1.2 0.034
R parahippocampal (pale yellow) 21.41 22.70 1.3 0.0078
R paracentral (gold) 21.35 22.36 1.0 0.017
R pars opercularis (dark blue) 21.83 23.21 1.3 0.025
R pars orbitalis (orange) 21.80 23.44 1.8 0.0093
R pars triangularis (red) 21.83 23.09 1.3 0.03
R postcentral (gold) 21.46 22.59 1.1 0.015
R posterior cingulate (blue) 21.36 22.26 0.87 0.026
R pre-central (blue) 21.34 22.29 0.92 0.022
R precuneus (yellow-green) 21.33 22.29 0.91 0.024
R rostral anterior cingulate (dark purple) 21.41 22.54 1.1 0.013
R rostral middle frontal (orange) 21.46 22.55 1.1 0.019
R superior frontal (red) 21.29 22.25 0.93 0.019
R superior parietal (green) 21.39 22.35 0.92 0.024
R superior temporal (forest green) 21.79 23.04 1.3 0.021
R supra-marginal (green) 21.61 22.74 1.1 0.019
R temporal pole (dark blue) 21.45 23.19 1.8 0.0027
R transverse temporal (dark blue) 22.24 23.57 1.3 0.042
R insula (lime green) 21.45 22.40 0.93 0.027

Nonrisk coded as ‘‘1’’ and risk coded as ‘‘0’’; b value represents gain in eccentricity for nonrisk group (CT and TT) compared with risk group
(CC). All passing FDR corrected across all 70 nodes tested (q < 0.05). Only significant results are presented. Colors refer to Figure 3.

Regional results showing CNTNAP2 SNP associations with node eccentricity.
L, left; R, right.
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hemisphere, and greater EGLOB in the right hemisphere.
These results may seem counter-intuitive given findings of
higher efficiency, but higher efficiency in structural networks
may reflect more random connections in the risk-group’s
brain networks, as random networks have high levels of
EGLOB (Bullmore and Sporns, 2009). Further analysis at the
nodal level revealed that the homozygous at-risk participants
had lower ECC across 60 of the 70 network nodes in the non-
risk participants, and borderline significant results (passed
p < 0.05 but not FDR correction) in EREG in 11 of the 70
nodes. A final analysis attempted to further simplify the re-
sults by assessing FA and fiber density differences, but did
not detect associations with these more common fiber mea-
sures. In other words, several global and nodal properties
of the structural network were different in carriers of the
risk gene, but they were not attributable to more common
characteristics of fibers, such as fiber density or FA. A larger
sample size might detect differences in FA in carriers of the
risk gene, but our findings suggest that differences are more
prominent at the network level.

In their recent study, Scott-Van Zeeland et al. (2010) found
that a CNTNAP2 SNP was associated with differences in the
functional connectivity of frontal and parietal cortical net-
works, including effects on the strength of short- and long-
range connections to the frontal and parietal cortex. In this
case, the range reflected the physical distance between two re-
gions, while in graph theory, distance instead reflects the
number of paths between one node and another. While
path distance and physical distance are not the same, they
both indicate distance between one brain region and another.
Since this is the property measured by CPL and EGLOB using
graph theoretical methods, we hypothesized that we could
assess corresponding measures from structural networks
using DTI, and that these measures might be altered in carri-
ers of the CNTNAP2 risk allele. We found that carriers have
altered structural connectivity—as measured by a number
of graph theory metrics—which may partly underlie the alter-
ations in functional connectivity.

SW is a well-developed concept from graph theory (Watts
and Strogatz, 1998) that has more recently been applied to
brain networks (Sporns et al., 2004). A network with high
SW has high local clustering and a short CPL. Subjects homo-
zygous for the risk allele had greater SW and greater EGLOB in
their left hemispheres, which are both driven in part or wholly
by shorter CPLs. Risk subjects also had higher EGLOB in
the right hemisphere as well as shorter CPL at a whole-brain
level. Since there were no significant differences in clustering,

differences in path length may drive the observed differences
in SW. Greater efficiency in those at risk is unexpected, as Hag-
mann et al. (2010) found greater efficiency as development pro-
gressed, and Pollonini et al. (2010) found decreased EGLOB in
autistic subjects. However, Hagmann et al. based their calcula-
tions on 1/ADC, while we based ours on fiber density, and
Pollonini et al. was a magnetoencephalography (MEG) study
with Granger causality, so the comparison is not direct. A ran-
dom network has high efficiency (Bullmore and Sporns, 2009),
but it may not be functionally advantageous if the proper con-
nections are not made. Neural network complexity is typically
achieved by a balance of randomness and regularity—at either
extreme, you have a system less able to learn, because it is ei-
ther never stable enough to remember or never flexible enough
to adapt (Sporns, 2011). A more random network, while hav-
ing a shorter average path length, will be less complex, and ar-
guably further from ideal in terms of brain function. A more
random network, while having a shorter average path length,
will be less complex, and may not reflect the organization
found in real functional brain networks. Individuals differ
widely in brain structure and function, but complete ‘‘random-
ness’’ of connections is not typical of functional circuitry in the
brain. A random network, with no stability in time or logical
set up, does not tend to make the most efficient use of the
brain’s resources (Chialvo, 2010). While additional studies
are required, higher EGLOB may reflect more random connec-
tions in the structural networks of the at-risk participants, as
random networks have low path lengths.

Based on our global results, we decided to look further into
various nodal measures of connectivity. In these post hoc tests,
we found a significant association between CNTNAP2 allele
dose and the ECC at 60 of the 70 nodes, with nonrisk carriers
having greater ECC across all nodes. ECC is the distance, in
paths traversed, between a given node and the node farthest
from it (Sporns, 2002). Nonrisk participants had greater ECC
across most of the brain. Studies of ECC in brain networks
are few (Pollonini et al., 2010) and have not generated any sig-
nificant results so far; so, we have little context for these results.
However, given that they are across a majority of nodes in the
brain, they could underlie the global trends we found as well.
We found 11 nodes with borderline significant differences
(passed p < 0.05 but not FDR correction) in EREG, 8 of which
were in the frontal lobe, 2 in the temporal lobe, and 1 in the pa-
rietal lobe. These are the areas where CNTNAP2 expression is
especially enriched (Abrahams et al., 2007; Arking et al., 2008;
Strauss et al., 2006; Vernes et al., 2008) and where Scott-Van
Zeeland found differences in functional connectivity.

In attempting to discover a simpler underlying cause of
these results, we looked into possible differences in the fiber
density matrices of the two groups. We had initially ruled
out differences in overall connectivity by running our analysis
of CNTNAP2 on the whole fiber density matrices. However, in
trying to understand our results of greater EGLOB and shorter
CPL in the risk allele carriers, we decided to look only at those
connections with at least one terminus in the frontal, parietal,
or temporal lobes. While we found a trend for greater fiber
density in the nonrisk subjects in a large number of frontal, pa-
rietal, and temporal connections, these results did not pass
FDR correction. Tan et al. (2010) conducted a study of a differ-
ent CNTNAP2 SNP, rs7794745, in a large cohort of healthy sub-
jects as well. Regional gray and white matter volumes were
lower in those homozygous for the risk allele. We will continue

Table 4. Results from Post hoc Analyses of Additive

Models for Integrated Global Measures That

Pass False Discovery Rate

Global measures–additive model

Measure CC CT TT b p value

Whole Brain
CPL 17.47 17.68 17.7 0.10 0.0096

Left Hemisphere
EGLOB 5.56 5.52 5.53 �0.062 0.00041
SW 16.32 16.04 16.14 �0.34 0.003

Post hoc analyses of the additive model passing FDR.
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to search for an explanation for our unexpected findings, but
currently they do not appear to be reducible to more simple
measures of structural connectivity.

Our findings relating a common risk variant in CNTNAP2
with structural connectivity suggests that the protein it codes
for, CASPR2, may be involved in white matter tract structure.
This seems likely, as CASPR2 has a role in neuroblast migra-
tion (Strauss et al., 2006) and in stabilizing K + channels in
the juxtaparanodal region (Poliak et al., 1999, 2003). CNTNAP2
risk allele carriers may have aberrant neuroblast migration or
K + channel clustering early in development; this may even un-
derlie the differences we see in structural connectivity. Abnor-
mal neuronal migration early in development could lead to
altered development of white matter, leading to the changes
we see. Abnormal K + channel clustering could affect axonal
physiology for developing tracts, perhaps even affecting over-
all tract structure. The recent study characterizing the
CNTNAP2 knockout found, along with various behavioral
hallmarks of autism, neuronal migration abnormalities, includ-
ing abnormal clustering of neurons in the deep layers of the
cortex (Peñagarikano et al., 2011). CNTNAP2 is a risk gene
for autism, but it also has effects in nonautistic populations
with language disorders. It may be more appropriate to con-
sider it as a risk gene for language difficulties—a key compo-
nent of autism. A disorder as complex and varied as autism
most likely results from a constellation of genetic variations
interacting with environmental influences (Szatmari et al.,
2007). The SNP rs2710102 in CNTNAP2 may be one of these
polymorphisms that, when combined with others, could in-
crease te risk for autism by increasing the susceptibility to lan-
guage difficulties. In this article, our focus was the effects of
CNTNAP2 on brain structural connectivity. Understanding
why a gene increases risk for a disorder is as crucial as deter-
mining that it increases risk in the first place, as a more mech-
anistic understanding is necessary for ultimately developing
interventions. Here, we discovered a mechanistic clue that
might explain the association between CNTNAP2 and autism
and language disorders. This altered connectivity may repre-
sent an intermediate phenotype for one source of language dif-
ficulties. Our participants were a large cohort of twins screened
for psychiatric disorders and developmental conditions; thus,
they fall within the normal range of language ability.

Of the three different models, the recessive model yielded
the strongest results. We chose this model based on informa-
tion that individuals with the CC genotype have an increased
risk of language impairment (www.snpedia.com/in-
dex.php/Rs2710102). However, Scott-Van Zeeland’s study
supports a dominant effect of the CNTNAP2 SNP. Vernes
et al. (2008) found that a haplotype of nine SNPs, including
this CNTNAP2 SNP, had a dominant effect, but no other stud-
ies have produced evidence on the dominance of CNTNAP2
rs2710102 by itself. Our analyses were based on healthy sub-
jects, while previous studies have been conducted on autistic
or language-impaired participants, so we followed our analy-
ses with post hoc tests to check the other two models in case
the effect differed from that in our healthy population.

Conclusions

In this study, the first to link graph theory measures of
brain structural connectivity with a specific genetic variant
associated with autism, we searched for structural differences

that might contribute to the reported effects of CNTNAP2 on
functional networks. In our large cohort of healthy adults, the
same CNTNAP2 SNP was also associated with detectable dif-
ferences in structural connectivity. In comparing findings
from different imaging modalities, these efforts lead to a bet-
ter understanding of genetic liability for autism and related
disorders. Our results not only add to previous work on the
effects of CNTNAP2 on brain structure but also raise new
questions regarding the underlying difference. A new ap-
proach to neuroimaging genetics is combining multiple poly-
morphisms–in the same or different genes—when testing for
associations with phenotypes, leading to increased predictive
accuracy (Chiang et al., 2011b; Hibar et al., 2011). Studies
using this method have already been conducted on another
autism risk gene (Kohannim et al., in review) that was a top
hit in a genome-wide scan for risk alleles (Anney et al.,
2010). CNTNAP2 is classified as an autism risk gene, but we
have shown that it has effects in a healthy population as
well. These results will further our understanding of how vul-
nerabilities for various genetically influenced disorders are
displayed in the brain.
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Bullmore ET. 2010. Whole-brain anatomical networks: does
the choice of nodes matter? NeuroImage 50:970–983.

Address correspondence to:
Paul M. Thompson

Department of Neurology
Laboratory of Neuro Imaging

UCLA School of Medicine
635 Charles Young Drive South

Suite 225
Los Angeles, CA 90095-7334

E-mail: thompson@loni.ucla.edu

ALTERED STRUCTURAL CONNECTIVITY IN AUTISM RISK GENE, CNTNAP2 459


